BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33709682)

  • 1. Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution.
    Beola L; Grazú V; Fernández-Afonso Y; Fratila RM; de Las Heras M; de la Fuente JM; Gutiérrez L; Asín L
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12982-12996. PubMed ID: 33709682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.
    Wang L; Dong J; Ouyang W; Wang X; Tang J
    Oncol Rep; 2012 Mar; 27(3):719-26. PubMed ID: 22134718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model.
    Basel MT; Balivada S; Wang H; Shrestha TB; Seo GM; Pyle M; Abayaweera G; Dani R; Koper OB; Tamura M; Chikan V; Bossmann SH; Troyer DL
    Int J Nanomedicine; 2012; 7():297-306. PubMed ID: 22287840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
    Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I
    Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.
    Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H
    Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.
    T S A; Lu YJ; Chen JP
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles.
    Kalber TL; Ordidge KL; Southern P; Loebinger MR; Kyrtatos PG; Pankhurst QA; Lythgoe MF; Janes SM
    Int J Nanomedicine; 2016; 11():1973-83. PubMed ID: 27274229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study.
    Balivada S; Rachakatla RS; Wang H; Samarakoon TN; Dani RK; Pyle M; Kroh FO; Walker B; Leaym X; Koper OB; Tamura M; Chikan V; Bossmann SH; Troyer DL
    BMC Cancer; 2010 Mar; 10():119. PubMed ID: 20350328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of iron oxide nanoparticles for MRI-guided magnetic hyperthermia tumor therapy: reassessing the role of shape in their magnetocaloric effect.
    Paez-Muñoz JM; Gámez F; Fernández-Afonso Y; Gallardo R; Pernia Leal M; Gutiérrez L; de la Fuente JM; Caro C; García-Martín ML
    J Mater Chem B; 2023 Nov; 11(46):11110-11120. PubMed ID: 37947078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Fluid Hyperthermia as Treatment Option for Pancreatic Cancer Cells and Pancreatic Cancer Organoids.
    Palzer J; Mues B; Goerg R; Aberle M; Rensen SS; Olde Damink SWM; Vaes RDW; Cramer T; Schmitz-Rode T; Neumann UP; Slabu I; Roeth AA
    Int J Nanomedicine; 2021; 16():2965-2981. PubMed ID: 33935496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia.
    Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O
    ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous hyperthermia-chemotherapy effect by arterial injection of Fe(Salen) for femur tumor.
    Umemura M; Islam MR; Fukumura H; Sato I; Kawabata Y; Matsuo K; Nakakaji R; Nagasako A; Ohtake M; Takayuki F; Yokoyama U; Nakayama T; Eguchi H; Ishikawa Y
    Cancer Sci; 2019 Jan; 110(1):356-365. PubMed ID: 30375142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Hyperthermia Treatment of Tumors Under Consideration of Magnetic Nanoparticle Distribution Using Micro-CT Imaging.
    Dähring H; Grandke J; Teichgräber U; Hilger I
    Mol Imaging Biol; 2015 Dec; 17(6):763-9. PubMed ID: 25896813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical sensing of
    Huang PC; Chaney EJ; Aksamitiene E; Barkalifa R; Spillman DR; Bogan BJ; Boppart SA
    Theranostics; 2021; 11(12):5620-5633. PubMed ID: 33897871
    [No Abstract]   [Full Text] [Related]  

  • 17. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area.
    Kossatz S; Ludwig R; Dähring H; Ettelt V; Rimkus G; Marciello M; Salas G; Patel V; Teran FJ; Hilger I
    Pharm Res; 2014 Dec; 31(12):3274-88. PubMed ID: 24890197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields.
    Yang CT; Korangath P; Stewart J; Hu C; Fu W; Grüttner C; Beck SE; Lin FH; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):59-75. PubMed ID: 33426997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.
    Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP
    J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.