BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33709682)

  • 41. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy.
    Gogoi M; Jaiswal MK; Sarma HD; Bahadur D; Banerjee R
    Integr Biol (Camb); 2017 Jun; 9(6):555-565. PubMed ID: 28513646
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles.
    Sato I; Umemura M; Mitsudo K; Fukumura H; Kim JH; Hoshino Y; Nakashima H; Kioi M; Nakakaji R; Sato M; Fujita T; Yokoyama U; Okumura S; Oshiro H; Eguchi H; Tohnai I; Ishikawa Y
    Sci Rep; 2016 Apr; 6():24629. PubMed ID: 27103308
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.
    Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C
    ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation.
    Carter TJ; Agliardi G; Lin FY; Ellis M; Jones C; Robson M; Richard-Londt A; Southern P; Lythgoe M; Zaw Thin M; Ryzhov V; de Rosales RTM; Gruettner C; Abdollah MRA; Pedley RB; Pankhurst QA; Kalber TL; Brandner S; Quezada S; Mulholland P; Shevtsov M; Chester K
    Small; 2021 Apr; 17(14):e2005241. PubMed ID: 33734595
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia.
    Zhang J; Dewilde AH; Chinn P; Foreman A; Barry S; Kanne D; Braunhut SJ
    Int J Hyperthermia; 2011; 27(7):682-97. PubMed ID: 21992561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Localized hyperthermia with iron oxide-doped yttrium microparticles: steps toward image-guided thermoradiotherapy in liver cancer.
    Gordon AC; Lewandowski RJ; Salem R; Day DE; Omary RA; Larson AC
    J Vasc Interv Radiol; 2014 Mar; 25(3):397-404. PubMed ID: 24315666
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment.
    Jeon S; Park BC; Lim S; Yoon HY; Jeon YS; Kim BS; Kim YK; Kim K
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33483-33491. PubMed ID: 32614594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo.
    Tang QS; Chen DZ; Xue WQ; Xiang JY; Gong YC; Zhang L; Guo CQ
    Int J Nanomedicine; 2011; 6():3077-85. PubMed ID: 22163161
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Triple Therapy of HER2
    Zolata H; Afarideh H; Davani FA
    Cancer Biother Radiopharm; 2016 Nov; 31(9):324-329. PubMed ID: 27831759
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intratumoral radiofrequency hyperthermia-enhanced direct chemotherapy of pancreatic cancer.
    Bai Z; Shi Y; Wang J; Qiu L; Monroe EJ; Teng G; Zhang F; Yang X
    Oncotarget; 2017 Jan; 8(2):3591-3599. PubMed ID: 27690303
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment.
    Dallet L; Stanicki D; Voisin P; Miraux S; Ribot EJ
    Sci Rep; 2021 Feb; 11(1):3286. PubMed ID: 33558583
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy.
    Balakrishnan PB; Silvestri N; Fernandez-Cabada T; Marinaro F; Fernandes S; Fiorito S; Miscuglio M; Serantes D; Ruta S; Livesey K; Hovorka O; Chantrell R; Pellegrino T
    Adv Mater; 2020 Nov; 32(45):e2003712. PubMed ID: 33002227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment.
    Asín L; Goya GF; Tres A; Ibarra MR
    Cell Death Dis; 2013 Apr; 4(4):e596. PubMed ID: 23598408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyperthermia affects collagen fiber architecture and induces apoptosis in pancreatic and fibroblast tumor hetero-spheroids in vitro.
    Piehler S; Wucherpfennig L; Tansi FL; Berndt A; Quaas R; Teichgraeber U; Hilger I
    Nanomedicine; 2020 Aug; 28():102183. PubMed ID: 32222478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications.
    Kruse AM; Meenach SA; Anderson KW; Hilt JZ
    Acta Biomater; 2014 Jun; 10(6):2622-9. PubMed ID: 24486913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.
    Wu Z; Zhuo Z; Cai D; Wu J; Wang J; Tang J
    Technol Health Care; 2015; 23 Suppl 2():S203-9. PubMed ID: 26410485
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells.
    Serio F; Silvestri N; Kumar Avugadda S; Nucci GEP; Nitti S; Onesto V; Catalano F; D'Amone E; Gigli G; Del Mercato LL; Pellegrino T
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):34-44. PubMed ID: 34492351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.