BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33709682)

  • 61. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release.
    Sasikala ARK; Unnithan AR; Yun YH; Park CH; Kim CS
    Acta Biomater; 2016 Feb; 31():122-133. PubMed ID: 26687978
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia.
    Zhang J; Dewilde AH; Chinn P; Foreman A; Barry S; Kanne D; Braunhut SJ
    Int J Hyperthermia; 2011; 27(7):682-97. PubMed ID: 21992561
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.
    Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C
    ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era.
    Pucci C; Degl'Innocenti A; Belenli Gümüş M; Ciofani G
    Biomater Sci; 2022 May; 10(9):2103-2121. PubMed ID: 35316317
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation.
    Carter TJ; Agliardi G; Lin FY; Ellis M; Jones C; Robson M; Richard-Londt A; Southern P; Lythgoe M; Zaw Thin M; Ryzhov V; de Rosales RTM; Gruettner C; Abdollah MRA; Pedley RB; Pankhurst QA; Kalber TL; Brandner S; Quezada S; Mulholland P; Shevtsov M; Chester K
    Small; 2021 Apr; 17(14):e2005241. PubMed ID: 33734595
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles.
    Sato I; Umemura M; Mitsudo K; Fukumura H; Kim JH; Hoshino Y; Nakashima H; Kioi M; Nakakaji R; Sato M; Fujita T; Yokoyama U; Okumura S; Oshiro H; Eguchi H; Tohnai I; Ishikawa Y
    Sci Rep; 2016 Apr; 6():24629. PubMed ID: 27103308
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment.
    Asín L; Goya GF; Tres A; Ibarra MR
    Cell Death Dis; 2013 Apr; 4(4):e596. PubMed ID: 23598408
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.
    Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A
    Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Complex of TNF-α and Modified Fe
    Teo P; Wang X; Chen B; Zhang H; Yang X; Huang Y; Tang J
    Cancer Biother Radiopharm; 2017 Dec; 32(10):379-386. PubMed ID: 29265918
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CD44-Targeted Magnetic Nanoparticles Kill Head And Neck Squamous Cell Carcinoma Stem Cells In An Alternating Magnetic Field.
    Su Z; Liu D; Chen L; Zhang J; Ru L; Chen Z; Gao Z; Wang X
    Int J Nanomedicine; 2019; 14():7549-7560. PubMed ID: 31571863
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Local hyperthermia treatment of tumors induces CD8(+) T cell-mediated resistance against distal and secondary tumors.
    Toraya-Brown S; Sheen MR; Zhang P; Chen L; Baird JR; Demidenko E; Turk MJ; Hoopes PJ; Conejo-Garcia JR; Fiering S
    Nanomedicine; 2014 Aug; 10(6):1273-1285. PubMed ID: 24566274
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy.
    Balakrishnan PB; Silvestri N; Fernandez-Cabada T; Marinaro F; Fernandes S; Fiorito S; Miscuglio M; Serantes D; Ruta S; Livesey K; Hovorka O; Chantrell R; Pellegrino T
    Adv Mater; 2020 Nov; 32(45):e2003712. PubMed ID: 33002227
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment.
    Ohtake M; Umemura M; Sato I; Akimoto T; Oda K; Nagasako A; Kim JH; Fujita T; Yokoyama U; Nakayama T; Hoshino Y; Ishiba M; Tokura S; Hara M; Muramoto T; Yamada S; Masuda T; Aoki I; Takemura Y; Murata H; Eguchi H; Kawahara N; Ishikawa Y
    Sci Rep; 2017 Feb; 7():42783. PubMed ID: 28218292
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia.
    Alphandéry E; Idbaih A; Adam C; Delattre JY; Schmitt C; Guyot F; Chebbi I
    Biomaterials; 2017 Oct; 141():210-222. PubMed ID: 28689117
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment.
    Dallet L; Stanicki D; Voisin P; Miraux S; Ribot EJ
    Sci Rep; 2021 Feb; 11(1):3286. PubMed ID: 33558583
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines.
    Souiade L; Domingo-Diez J; Alcaide C; Gámez B; Gámez L; Ramos M; Serrano Olmedo JJ
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958913
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia.
    Demessie AA; Park Y; Singh P; Moses AS; Korzun T; Sabei FY; Albarqi HA; Campos L; Wyatt CR; Farsad K; Dhagat P; Sun C; Taratula OR; Taratula O
    Small Methods; 2022 Dec; 6(12):e2200916. PubMed ID: 36319445
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment.
    Beola L; Asín L; Roma-Rodrigues C; Fernández-Afonso Y; Fratila RM; Serantes D; Ruta S; Chantrell RW; Fernandes AR; Baptista PV; de la Fuente JM; Grazú V; Gutiérrez L
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43474-43487. PubMed ID: 32870658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.