These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33709722)

  • 41. The role of microtubules in processive kinesin movement.
    Kikkawa M
    Trends Cell Biol; 2008 Mar; 18(3):128-35. PubMed ID: 18280159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.
    Ge H; Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062125. PubMed ID: 23848645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spontaneous Formation of a Globally Connected Contractile Network in a Microtubule-Motor System.
    Torisawa T; Taniguchi D; Ishihara S; Oiwa K
    Biophys J; 2016 Jul; 111(2):373-385. PubMed ID: 27463139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new look at the microtubule binding patterns of dimeric kinesins.
    Hoenger A; Thormählen M; Diaz-Avalos R; Doerhoefer M; Goldie KN; Müller J; Mandelkow E
    J Mol Biol; 2000 Apr; 297(5):1087-103. PubMed ID: 10764575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems.
    Heinen L; Walther A
    Sci Adv; 2019 Jul; 5(7):eaaw0590. PubMed ID: 31334349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coarse-graining errors and numerical optimization using a relative entropy framework.
    Chaimovich A; Shell MS
    J Chem Phys; 2011 Mar; 134(9):094112. PubMed ID: 21384955
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The energy cost and optimal design for synchronization of coupled molecular oscillators.
    Zhang D; Cao Y; Ouyang Q; Tu Y
    Nat Phys; 2020 Jan; 16(1):95-100. PubMed ID: 32670386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamics of random reaction networks.
    Fischer J; Kleidon A; Dittrich P
    PLoS One; 2015; 10(2):e0117312. PubMed ID: 25723751
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dissipation and energy propagation across scales in an active cytoskeletal material.
    Foster PJ; Bae J; Lemma B; Zheng J; Ireland W; Chandrakar P; Boros R; Dogic Z; Needleman DJ; Vlassak JJ
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2207662120. PubMed ID: 37000847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects.
    Gramlich MW; Conway L; Liang WH; Labastide JA; King SJ; Xu J; Ross JL
    Sci Rep; 2017 Mar; 7():44290. PubMed ID: 28287156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments.
    Paxton WF; Bouxsein NF; Henderson IM; Gomez A; Bachand GD
    Nanoscale; 2015 Jul; 7(25):10998-1004. PubMed ID: 25939271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intrinsic noise, dissipation cost, and robustness of cellular networks: the underlying energy landscape of MAPK signal transduction.
    Lapidus S; Han B; Wang J
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6039-44. PubMed ID: 18420822
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A dynamical model of kinesin-microtubule motility assays.
    Gibbons F; Chauwin JF; Despósito M; José JV
    Biophys J; 2001 Jun; 80(6):2515-26. PubMed ID: 11371430
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporal-Spatial Evolution of Kinetic and Thermal Energy Dissipation Rates in a Three-Dimensional Turbulent Rayleigh-Taylor Mixing Zone.
    Guo W; Guo X; Wei Y; Zhang Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286424
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.
    Zhang P; Dai W; Hahn J; Gilbert SP
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6359-64. PubMed ID: 25941402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Equilibrium studies of kinesin-nucleotide intermediates.
    Rosenfeld SS; Rener B; Correia JJ; Mayo MS; Cheung HC
    J Biol Chem; 1996 Apr; 271(16):9473-82. PubMed ID: 8621618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The force exerted by a single kinesin molecule against a viscous load.
    Hunt AJ; Gittes F; Howard J
    Biophys J; 1994 Aug; 67(2):766-81. PubMed ID: 7948690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformations of kinesin: solution vs. crystal structures and interactions with microtubules.
    Marx A; Thormählen M; Müller J; Sack S; Mandelkow EM; Mandelkow E
    Eur Biophys J; 1998; 27(5):455-65. PubMed ID: 9760727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reversibly Bound Kinesin-1 Motor Proteins Propelling Microtubules Demonstrate Dynamic Recruitment of Active Building Blocks.
    Lam AT; Tsitkov S; Zhang Y; Hess H
    Nano Lett; 2018 Feb; 18(2):1530-1534. PubMed ID: 29318877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchical network structure as the source of hierarchical dynamics (power-law frequency spectra) in living and non-living systems: How state-trait continua (body plans, personalities) emerge from first principles in biophysics.
    Goekoop R; de Kleijn R
    Neurosci Biobehav Rev; 2023 Nov; 154():105402. PubMed ID: 37741517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.