These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rigid Cluster Decomposition Reveals Criticality in Frictional Jamming. Henkes S; Quint DA; Fily Y; Schwarz JM Phys Rev Lett; 2016 Jan; 116(2):028301. PubMed ID: 26824572 [TBL] [Abstract][Full Text] [Related]
3. Force networks and jamming in shear-deformed sphere packings. Vinutha HA; Sastry S Phys Rev E; 2019 Jan; 99(1-1):012123. PubMed ID: 30780291 [TBL] [Abstract][Full Text] [Related]
4. Discontinuous rigidity transition associated with shear jamming in granular simulations. Babu V; Vinutha HA; Bi D; Sastry S Soft Matter; 2023 Dec; 19(48):9399-9404. PubMed ID: 37830248 [TBL] [Abstract][Full Text] [Related]
5. The physics of jamming for granular materials: a review. Behringer RP; Chakraborty B Rep Prog Phys; 2019 Jan; 82(1):012601. PubMed ID: 30132446 [TBL] [Abstract][Full Text] [Related]
6. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. van Hecke M J Phys Condens Matter; 2010 Jan; 22(3):033101. PubMed ID: 21386274 [TBL] [Abstract][Full Text] [Related]
7. Evident structural anisotropies arising from near-zero particle asphericity in granular spherocylinder packings. Sun Y; Wang C; Yang J; Shi W; Pang Q; Wang Y; Li J; Hu B; Xia C Phys Rev E; 2024 Jul; 110(1-1):014903. PubMed ID: 39161035 [TBL] [Abstract][Full Text] [Related]
8. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function. Atkinson S; Stillinger FH; Torquato S Phys Rev E; 2016 Sep; 94(3-1):032902. PubMed ID: 27739707 [TBL] [Abstract][Full Text] [Related]
9. Cavity method for force transmission in jammed disordered packings of hard particles. Bo L; Mari R; Song C; Makse HA Soft Matter; 2014 Oct; 10(37):7379-92. PubMed ID: 25082504 [TBL] [Abstract][Full Text] [Related]
10. Critical slowing down and hyperuniformity on approach to jamming. Atkinson S; Zhang G; Hopkins AB; Torquato S Phys Rev E; 2016 Jul; 94(1-1):012902. PubMed ID: 27575201 [TBL] [Abstract][Full Text] [Related]
11. Designing the pressure-dependent shear modulus using tessellated granular metamaterials. Zhang J; Wang D; Jin W; Xia A; Pashine N; Kramer-Bottiglio R; Shattuck MD; O'Hern CS Phys Rev E; 2023 Sep; 108(3-1):034901. PubMed ID: 37849141 [TBL] [Abstract][Full Text] [Related]
12. Microscopic Origins of Shear Jamming for 2D Frictional Grains. Wang D; Ren J; Dijksman JA; Zheng H; Behringer RP Phys Rev Lett; 2018 May; 120(20):208004. PubMed ID: 29864324 [TBL] [Abstract][Full Text] [Related]
17. Structural signature of jamming in granular media. Corwin EI; Jaeger HM; Nagel SR Nature; 2005 Jun; 435(7045):1075-8. PubMed ID: 15973404 [TBL] [Abstract][Full Text] [Related]
18. Force mobilization and generalized isostaticity in jammed packings of frictional grains. Shundyak K; van Hecke M; van Saarloos W Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):010301. PubMed ID: 17358102 [TBL] [Abstract][Full Text] [Related]
19. Rigidity percolation in a random tensegrity via analytic graph theory. Stephenson W; Sudhakar V; McInerney J; Czajkowski M; Rocklin DZ Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2302536120. PubMed ID: 37988473 [TBL] [Abstract][Full Text] [Related]
20. Betweenness centrality as predictor for forces in granular packings. Kollmer JE; Daniels KE Soft Matter; 2019 Feb; 15(8):1793-1798. PubMed ID: 30681690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]