These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33709844)

  • 21. Intersection AEB implementation strategies for left turn across path crashes.
    Sander U; Lubbe N; Pietzsch S
    Traffic Inj Prev; 2019; 20(sup1):S119-S125. PubMed ID: 31381448
    [No Abstract]   [Full Text] [Related]  

  • 22. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.
    Scanlon JM; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S182-9. PubMed ID: 26436230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities.
    Jeppsson H; Lubbe N
    Accid Anal Prev; 2020 Jul; 142():105538. PubMed ID: 32470821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The combined benefits of motorcycle antilock braking systems (ABS) in preventing crashes and reducing crash severity.
    Rizzi M; Kullgren A; Tingvall C
    Traffic Inj Prev; 2016; 17(3):297-303. PubMed ID: 26098303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AEB effectiveness evaluation based on car-to-cyclist accident reconstructions using video of drive recorder.
    Zhao Y; Ito D; Mizuno K
    Traffic Inj Prev; 2019; 20(1):100-106. PubMed ID: 30822153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of automated versus manual emergency braking on rear seat adult and pediatric occupant precrash motion.
    Graci V; Douglas E; Seacrist T; Kerrigan J; Mansfield J; Bolte J; Sherony R; Hallman J; Arbogast KB
    Traffic Inj Prev; 2019; 20(sup1):S106-S111. PubMed ID: 31381438
    [No Abstract]   [Full Text] [Related]  

  • 27. Field effectiveness evaluation of advanced driver assistance systems.
    Spicer R; Vahabaghaie A; Bahouth G; Drees L; Martinez von Bülow R; Baur P
    Traffic Inj Prev; 2018; 19(sup2):S91-S95. PubMed ID: 30543454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating sleep deprivation and time-of-day influences on crash avoidance maneuvers of young motorcyclists using a dynamic simulator.
    Bougard C; Davenne D; Moussay S; Espié S
    J Safety Res; 2021 Sep; 78():36-46. PubMed ID: 34399930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving the safety relevance of automatic emergency braking testing programs: An examination of common characteristics of police-reported rear-end crashes in the United States.
    Kidd DG
    Traffic Inj Prev; 2022; 23(sup1):S137-S142. PubMed ID: 35767826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motorcycle curve assist: A novel approach based on active speed control for crash injury reduction.
    Lucci C; Allen T; Baldanzini N; Savino G
    Traffic Inj Prev; 2022; 23(sup1):S56-S61. PubMed ID: 36026461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developing an improved automatic preventive braking system based on safety-critical car-following events from naturalistic driving study data.
    Zhou W; Wang X; Glaser Y; Wu X; Xu X
    Accid Anal Prev; 2022 Dec; 178():106834. PubMed ID: 36150234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking.
    Jeppsson H; Östling M; Lubbe N
    Accid Anal Prev; 2018 Feb; 111():311-320. PubMed ID: 29257980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying Vision Zero: Crash avoidance in rural and motorway accident scenarios by combination of ACC, AEB, and LKS projected to German accident occurrence.
    Stark L; Düring M; Schoenawa S; Maschke JE; Do CM
    Traffic Inj Prev; 2019; 20(sup1):S126-S132. PubMed ID: 31381430
    [No Abstract]   [Full Text] [Related]  

  • 34. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential benefit of sensor system field-of-view and range in pedestrian automated emergency braking systems.
    Haus SH; Sherony R; Gabler HC
    Traffic Inj Prev; 2021; 22(sup1):S111-S115. PubMed ID: 34469208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Passenger muscle responses in lane change and lane change with braking maneuvers using two belt configurations: Standard and reversible pre-pretensioner.
    Ghaffari G; Brolin K; Pipkorn B; Jakobsson L; Davidsson J
    Traffic Inj Prev; 2019; 20(sup1):S43-S51. PubMed ID: 31381435
    [No Abstract]   [Full Text] [Related]  

  • 37. Evaluation of an autonomous braking system in real-world PTW crashes.
    Savino G; Pierini M; Rizzi M; Frampton R
    Traffic Inj Prev; 2013; 14(5):532-43. PubMed ID: 23697899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effectiveness of front crash prevention systems in reducing large truck real-world crash rates.
    Teoh ER
    Traffic Inj Prev; 2021; 22(4):284-289. PubMed ID: 33769151
    [No Abstract]   [Full Text] [Related]  

  • 39. Does the improved stability offered by motorcycle antilock brakes (ABS) make sliding crashes less common? In-depth analysis of fatal crashes involving motorcycles fitted with ABS.
    Rizzi M; Strandroth J; Holst J; Tingvall C
    Traffic Inj Prev; 2016 Aug; 17(6):625-32. PubMed ID: 26760265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating automated emergency braking performance in simulated car-to-two-wheeler crashes in China: A comparison between C-NCAP tests and in-depth crash data.
    Sui B; Lubbe N; Bärgman J
    Accid Anal Prev; 2021 Sep; 159():106229. PubMed ID: 34225169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.