BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33709862)

  • 1. Synthetic molecules as DprE1 inhibitors: A patent review.
    Imran M; A S A; Thabet HK; Abida ; Afroz Bakht M
    Expert Opin Ther Pat; 2021 Aug; 31(8):759-772. PubMed ID: 33709862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis.
    Chikhale RV; Barmade MA; Murumkar PR; Yadav MR
    J Med Chem; 2018 Oct; 61(19):8563-8593. PubMed ID: 29851474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the development of DprE1 inhibitors using AI/CADD approaches.
    Chen K; Xu R; Hu X; Li D; Hou T; Kang Y
    Drug Discov Today; 2024 Jun; 29(6):103987. PubMed ID: 38670256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis.
    Foo CS; Lechartier B; Kolly GS; Boy-Röttger S; Neres J; Rybniker J; Lupien A; Sala C; Piton J; Cole ST
    Antimicrob Agents Chemother; 2016 Nov; 60(11):6451-6459. PubMed ID: 27527085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and evaluation of covalent inhibitors of DprE1 as antitubercular agents.
    Liu L; Kong C; Fumagalli M; Savková K; Xu Y; Huszár S; Sammartino JC; Fan D; Chiarelli LR; Mikušová K; Sun Z; Qiao C
    Eur J Med Chem; 2020 Dec; 208():112773. PubMed ID: 32898793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DprE1 and Ddn as promising therapeutic targets in the development of novel anti-tuberculosis nitroaromatic drugs.
    Paoli-Lombardo R; Primas N; Vanelle P
    Eur J Med Chem; 2024 Aug; 274():116559. PubMed ID: 38850856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An insight into the discovery, clinical studies, compositions, and patents of macozinone: A drug targeting the DprE1 enzyme of Mycobacterium tuberculosis.
    Imran M; Khan SA; Asdaq SMB; Almehmadi M; Abdulaziz O; Kamal M; Alshammari MK; Alsubaihi LI; Hussain KH; Alharbi AS; Alzahrani AK
    J Infect Public Health; 2022 Oct; 15(10):1097-1107. PubMed ID: 36122509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors.
    Piton J; Foo CS; Cole ST
    Drug Discov Today; 2017 Mar; 22(3):526-533. PubMed ID: 27666194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review.
    Dash S; Rathi E; Kumar A; Chawla K; Joseph A; Kini SG
    J Biomol Struct Dyn; 2024 Aug; 42(12):6472-6522. PubMed ID: 37395797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Screening of Small Molecular Inhibitors against DprE1.
    Zhang G; Guo S; Cui H; Qi J
    Molecules; 2018 Feb; 23(3):. PubMed ID: 29495447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of DprE1 inhibitors for tuberculosis through integrated in-silico approaches.
    Dash S; Rathi E; Kumar A; Chawla K; Kini SG
    Sci Rep; 2024 May; 14(1):11315. PubMed ID: 38760437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Potential Inhibition of Candidate Drug Molecules for Clinical Investigation Based on their Docking or Crystallographic Analyses against
    Dey R; Nandi S; Samadder A; Saxena A; Saxena AK
    Curr Top Med Chem; 2020; 20(29):2662-2680. PubMed ID: 32885754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Hydantoins as Potent Antimycobacterial Decaprenylphosphoryl-β-d-Ribose Oxidase (DprE1) Inhibitors.
    Balabon O; Pitta E; Rogacki MK; Meiler E; Casanueva R; Guijarro L; Huss S; Lopez-Roman EM; Santos-Villarejo Á; Augustyns K; Ballell L; Aguirre DB; Bates RH; Cunningham F; Cacho M; Van der Veken P
    J Med Chem; 2020 May; 63(10):5367-5386. PubMed ID: 32342688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decaprenylphosphoryl-β-D-ribose 2'-epimerase from Mycobacterium tuberculosis is a magic drug target.
    Manina G; Pasca MR; Buroni S; De Rossi E; Riccardi G
    Curr Med Chem; 2010; 17(27):3099-108. PubMed ID: 20629622
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Borthwick JA; Alemparte C; Wall I; Whitehurst BC; Argyrou A; Burley G; de Dios-Anton P; Guijarro L; Monteiro MC; Ortega F; Suckling CJ; Pichel JC; Cacho M; Young RJ
    J Med Chem; 2020 Mar; 63(5):2557-2576. PubMed ID: 31922409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Affairs, Future Perspectives of Tuberculosis and Antitubercular Agents.
    Gawad J; Bonde C
    Indian J Tuberc; 2018 Jan; 65(1):15-22. PubMed ID: 29332642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a pyrimidinetrione derivative as the potent DprE1 inhibitor by structure-based virtual ligand screening.
    Gao Y; Xie J; Tang R; Yang K; Zhang Y; Chen L; Li H
    Bioorg Chem; 2019 Apr; 85():168-178. PubMed ID: 30616098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends in discovery of new drugs for tuberculosis therapy.
    Riccardi G; Pasca MR
    J Antibiot (Tokyo); 2014 Sep; 67(9):655-9. PubMed ID: 25095807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DprE1--from the discovery to the promising tuberculosis drug target.
    Mikusová K; Makarov V; Neres J
    Curr Pharm Des; 2014; 20(27):4379-403. PubMed ID: 24245764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis.
    Kb S; Kumari A; Shetty D; Fernandes E; Dv C; Jays J; Murahari M
    J Mol Graph Model; 2020 Dec; 101():107718. PubMed ID: 32949960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.