BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 33710893)

  • 1. Nanocapillarity and Nanoconfinement Effects of Pipet-like Bismuth@Carbon Nanotubes for Highly Efficient Electrocatalytic CO
    Zhang W; Yang S; Jiang M; Hu Y; Hu C; Zhang X; Jin Z
    Nano Lett; 2021 Mar; 21(6):2650-2657. PubMed ID: 33710893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO
    Peng CJ; Wu XT; Zeng G; Zhu QL
    Chem Asian J; 2021 Jun; 16(12):1539-1544. PubMed ID: 33929102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin Bismuth Nanosheets as a Highly Efficient CO
    Su P; Xu W; Qiu Y; Zhang T; Li X; Zhang H
    ChemSusChem; 2018 Mar; 11(5):848-853. PubMed ID: 29323463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric carbon nitride supported Bi nanoparticles as highly efficient CO
    Ma X; Tian J; Wang M; Shen M; Zhang L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1676-1684. PubMed ID: 34742082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO
    Deng P; Yang F; Wang Z; Chen S; Zhou Y; Zaman S; Xia BY
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10807-10813. PubMed ID: 32232890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.
    Wu J; Yadav RM; Liu M; Sharma PP; Tiwary CS; Ma L; Zou X; Zhou XD; Yakobson BI; Lou J; Ajayan PM
    ACS Nano; 2015 May; 9(5):5364-71. PubMed ID: 25897553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Bi Electrocatalyst for the Reduction of CO
    Tan D; Lee W; Kim YE; Ko YN; Youn MH; Jeon YE; Hong J; Park JE; Seo J; Jeong SK; Choi Y; Choi H; Kim HY; Park KT
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28890-28899. PubMed ID: 35714281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallic bismuth nanoclusters confined in micropores for efficient electrocatalytic reduction of carbon dioxide with long-term stability.
    Yu H; Yang F; Zhao W; Liu C; Liu X; Hong W; Chen S; Deng S; Wang J
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):81-90. PubMed ID: 36215826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilayer Porous Electrocatalysts for Stable and Selective Electrochemical Reduction of CO
    Prasad YSS; Chandiran AK; Chetty R
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31011-31022. PubMed ID: 38832751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal-Driven Dispersion of Bismuth Nanoparticles among Carbon Matrix for Efficient Carbon Dioxide Reduction.
    Guo W; Cao X; Tan D; Wulan B; Ma J; Zhang J
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202401333. PubMed ID: 38670936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Under-Coordinated Active Sites with Tailored Chemical Microenvironments over Mosaic Bismuth Nanosheets for Selective CO
    Sheng Y; Guo Y; Yu H; Deng K; Wang Z; Li X; Wang H; Wang L; Xu Y
    Small; 2023 Apr; 19(16):e2207305. PubMed ID: 36670091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-Doped Bismuth Nanosheet as an Efficient Electrocatalyst to CO
    Li S; Kang Y; Mo C; Peng Y; Ma H; Peng J
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sn-Doped Bi
    Li X; Wu X; Li J; Huang J; Ji L; Leng Z; Qian N; Yang D; Zhang H
    Nanoscale; 2021 Dec; 13(46):19610-19616. PubMed ID: 34816271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO
    Lu P; Gao D; He H; Wang Q; Liu Z; Dipazir S; Yuan M; Zu W; Zhang G
    Nanoscale; 2019 Apr; 11(16):7805-7812. PubMed ID: 30958497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporous tin oxide for electrocatalytic CO
    Ge H; Gu Z; Han P; Shen H; Al-Enizi AM; Zhang L; Zheng G
    J Colloid Interface Sci; 2018 Dec; 531():564-569. PubMed ID: 30056331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO
    Liu P; Liu H; Zhang S; Wang J; Wang C
    J Colloid Interface Sci; 2021 Nov; 602():740-747. PubMed ID: 34153712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoting the Electrocatalytic Reduction of CO
    Yu ZL; Wu SQ; Chen LW; Hao YC; Su X; Zhu Z; Gao WY; Wang B; Yin AX
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10648-10655. PubMed ID: 35167272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO
    Ghosh S; Garapati MS; Ghosh A; Sundara R
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40432-40442. PubMed ID: 31585040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi
    Yang F; Xie Z; Huang X; Yin X; Zhang W; Huang Y; Zhang D
    Phys Chem Chem Phys; 2023 Mar; 25(13):9198-9207. PubMed ID: 36919363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Nanocomposite of Bismuth Clusters and Bi
    Lin L; He X; Zhang XG; Ma W; Zhang B; Wei D; Xie S; Zhang Q; Yi X; Wang Y
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214959. PubMed ID: 36307930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.