These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 33710893)
1. Nanocapillarity and Nanoconfinement Effects of Pipet-like Bismuth@Carbon Nanotubes for Highly Efficient Electrocatalytic CO Zhang W; Yang S; Jiang M; Hu Y; Hu C; Zhang X; Jin Z Nano Lett; 2021 Mar; 21(6):2650-2657. PubMed ID: 33710893 [TBL] [Abstract][Full Text] [Related]
2. In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO Peng CJ; Wu XT; Zeng G; Zhu QL Chem Asian J; 2021 Jun; 16(12):1539-1544. PubMed ID: 33929102 [TBL] [Abstract][Full Text] [Related]
3. Ultrathin Bismuth Nanosheets as a Highly Efficient CO Su P; Xu W; Qiu Y; Zhang T; Li X; Zhang H ChemSusChem; 2018 Mar; 11(5):848-853. PubMed ID: 29323463 [TBL] [Abstract][Full Text] [Related]
4. Polymeric carbon nitride supported Bi nanoparticles as highly efficient CO Ma X; Tian J; Wang M; Shen M; Zhang L J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1676-1684. PubMed ID: 34742082 [TBL] [Abstract][Full Text] [Related]
5. Metal-Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO Deng P; Yang F; Wang Z; Chen S; Zhou Y; Zaman S; Xia BY Angew Chem Int Ed Engl; 2020 Jun; 59(27):10807-10813. PubMed ID: 32232890 [TBL] [Abstract][Full Text] [Related]
6. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. Wu J; Yadav RM; Liu M; Sharma PP; Tiwary CS; Ma L; Zou X; Zhou XD; Yakobson BI; Lou J; Ajayan PM ACS Nano; 2015 May; 9(5):5364-71. PubMed ID: 25897553 [TBL] [Abstract][Full Text] [Related]
7. In-Bi Electrocatalyst for the Reduction of CO Tan D; Lee W; Kim YE; Ko YN; Youn MH; Jeon YE; Hong J; Park JE; Seo J; Jeong SK; Choi Y; Choi H; Kim HY; Park KT ACS Appl Mater Interfaces; 2022 Jun; 14(25):28890-28899. PubMed ID: 35714281 [TBL] [Abstract][Full Text] [Related]
8. Metallic bismuth nanoclusters confined in micropores for efficient electrocatalytic reduction of carbon dioxide with long-term stability. Yu H; Yang F; Zhao W; Liu C; Liu X; Hong W; Chen S; Deng S; Wang J J Colloid Interface Sci; 2023 Jan; 630(Pt A):81-90. PubMed ID: 36215826 [TBL] [Abstract][Full Text] [Related]
9. Bilayer Porous Electrocatalysts for Stable and Selective Electrochemical Reduction of CO Prasad YSS; Chandiran AK; Chetty R ACS Appl Mater Interfaces; 2024 Jun; 16(24):31011-31022. PubMed ID: 38832751 [TBL] [Abstract][Full Text] [Related]
10. Thermal-Driven Dispersion of Bismuth Nanoparticles among Carbon Matrix for Efficient Carbon Dioxide Reduction. Guo W; Cao X; Tan D; Wulan B; Ma J; Zhang J Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202401333. PubMed ID: 38670936 [TBL] [Abstract][Full Text] [Related]
11. Engineering Under-Coordinated Active Sites with Tailored Chemical Microenvironments over Mosaic Bismuth Nanosheets for Selective CO Sheng Y; Guo Y; Yu H; Deng K; Wang Z; Li X; Wang H; Wang L; Xu Y Small; 2023 Apr; 19(16):e2207305. PubMed ID: 36670091 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen-Doped Bismuth Nanosheet as an Efficient Electrocatalyst to CO Li S; Kang Y; Mo C; Peng Y; Ma H; Peng J Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430964 [TBL] [Abstract][Full Text] [Related]
13. Sn-Doped Bi Li X; Wu X; Li J; Huang J; Ji L; Leng Z; Qian N; Yang D; Zhang H Nanoscale; 2021 Dec; 13(46):19610-19616. PubMed ID: 34816271 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO Lu P; Gao D; He H; Wang Q; Liu Z; Dipazir S; Yuan M; Zu W; Zhang G Nanoscale; 2019 Apr; 11(16):7805-7812. PubMed ID: 30958497 [TBL] [Abstract][Full Text] [Related]
15. Mesoporous tin oxide for electrocatalytic CO Ge H; Gu Z; Han P; Shen H; Al-Enizi AM; Zhang L; Zheng G J Colloid Interface Sci; 2018 Dec; 531():564-569. PubMed ID: 30056331 [TBL] [Abstract][Full Text] [Related]
16. A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO Liu P; Liu H; Zhang S; Wang J; Wang C J Colloid Interface Sci; 2021 Nov; 602():740-747. PubMed ID: 34153712 [TBL] [Abstract][Full Text] [Related]
17. Promoting the Electrocatalytic Reduction of CO Yu ZL; Wu SQ; Chen LW; Hao YC; Su X; Zhu Z; Gao WY; Wang B; Yin AX ACS Appl Mater Interfaces; 2022 Mar; 14(8):10648-10655. PubMed ID: 35167272 [TBL] [Abstract][Full Text] [Related]
18. Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO Ghosh S; Garapati MS; Ghosh A; Sundara R ACS Appl Mater Interfaces; 2019 Oct; 11(43):40432-40442. PubMed ID: 31585040 [TBL] [Abstract][Full Text] [Related]
19. Bi Yang F; Xie Z; Huang X; Yin X; Zhang W; Huang Y; Zhang D Phys Chem Chem Phys; 2023 Mar; 25(13):9198-9207. PubMed ID: 36919363 [TBL] [Abstract][Full Text] [Related]
20. Unlocking the Potential of Bi Ma A; Lee Y; Seo D; Kim J; Park S; Son J; Kwon W; Nam DH; Lee H; Kim YI; Um HD; Shin H; Nam KM Adv Sci (Weinh); 2024 Jul; 11(28):e2400874. PubMed ID: 38760899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]