These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 33711199)
1. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. Distler T; Polley C; Shi F; Schneidereit D; Ashton MD; Friedrich O; Kolb JF; Hardy JG; Detsch R; Seitz H; Boccaccini AR Adv Healthc Mater; 2021 May; 10(9):e2001876. PubMed ID: 33711199 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of electroconductive hydrogels based on oxidized alginate and polypyrrole-grafted gelatin as tissue scaffolds. Shabani Samghabadi M; Karkhaneh A; Katbab AA Soft Matter; 2021 Sep; 17(37):8465-8473. PubMed ID: 34586146 [TBL] [Abstract][Full Text] [Related]
3. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Serafin A; Murphy C; Rubio MC; Collins MN Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111927. PubMed ID: 33641920 [TBL] [Abstract][Full Text] [Related]
4. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications. Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895 [TBL] [Abstract][Full Text] [Related]
5. Development of an oxygen-releasing electroconductive in-situ crosslinkable hydrogel based on oxidized pectin and grafted gelatin for tissue engineering applications. Nejati S; Karimi Soflou R; Khorshidi S; Karkhaneh A Colloids Surf B Biointerfaces; 2020 Dec; 196():111347. PubMed ID: 32949923 [TBL] [Abstract][Full Text] [Related]
6. Conductive GelMA/alginate/polypyrrole/graphene hydrogel as a potential scaffold for cardiac tissue engineering; Physiochemical, mechanical, and biological evaluations. Kaviani S; Talebi A; Labbaf S; Karimzadeh F Int J Biol Macromol; 2024 Feb; 259(Pt 2):129276. PubMed ID: 38211921 [TBL] [Abstract][Full Text] [Related]
7. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301 [TBL] [Abstract][Full Text] [Related]
8. Ionically and Enzymatically Dual Cross-Linked Oxidized Alginate Gelatin Hydrogels with Tunable Stiffness and Degradation Behavior for Tissue Engineering. Distler T; McDonald K; Heid S; Karakaya E; Detsch R; Boccaccini AR ACS Biomater Sci Eng; 2020 Jul; 6(7):3899-3914. PubMed ID: 33463325 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. Sarker B; Singh R; Silva R; Roether JA; Kaschta J; Detsch R; Schubert DW; Cicha I; Boccaccini AR PLoS One; 2014; 9(9):e107952. PubMed ID: 25268892 [TBL] [Abstract][Full Text] [Related]
10. Self-healing conductive hydrogels based on alginate, gelatin and polypyrrole serve as a repairable circuit and a mechanical sensor. Ren K; Cheng Y; Huang C; Chen R; Wang Z; Wei J J Mater Chem B; 2019 Sep; 7(37):5704-5712. PubMed ID: 31482926 [TBL] [Abstract][Full Text] [Related]
11. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
12. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Schwarz S; Kuth S; Distler T; Gögele C; Stölzel K; Detsch R; Boccaccini AR; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111189. PubMed ID: 32806255 [TBL] [Abstract][Full Text] [Related]
13. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
14. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO Monavari M; Homaeigohar S; Fuentes-Chandía M; Nawaz Q; Monavari M; Venkatraman A; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112470. PubMed ID: 34857258 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review. Distler T; Boccaccini AR Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel. Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434 [TBL] [Abstract][Full Text] [Related]
17. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair. Liu C; Qin W; Wang Y; Ma J; Liu J; Wu S; Zhao H Int J Nanomedicine; 2021; 16():8417-8432. PubMed ID: 35002236 [TBL] [Abstract][Full Text] [Related]
18. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
19. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation. Guan S; Wang Y; Xie F; Wang S; Xu W; Xu J; Sun C Molecules; 2022 Nov; 27(23):. PubMed ID: 36500418 [TBL] [Abstract][Full Text] [Related]
20. An interpenetrating and patternable conducting polymer hydrogel for electrically stimulated release of glutamate. Bansal M; Raos B; Aqrawe Z; Wu Z; Svirskis D Acta Biomater; 2022 Jan; 137():124-135. PubMed ID: 34644612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]