BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33711246)

  • 1. B-Raf autoinhibition in the presence and absence of 14-3-3.
    Zhang M; Jang H; Li Z; Sacks DB; Nussinov R
    Structure; 2021 Jul; 29(7):768-777.e2. PubMed ID: 33711246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding.
    Martinez Fiesco JA; Durrant DE; Morrison DK; Zhang P
    Nat Commun; 2022 Jan; 13(1):486. PubMed ID: 35078985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling.
    Li S; Jang H; Zhang J; Nussinov R
    Structure; 2018 Mar; 26(3):513-525.e2. PubMed ID: 29429878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes.
    Park E; Rawson S; Li K; Kim BW; Ficarro SB; Pino GG; Sharif H; Marto JA; Jeon H; Eck MJ
    Nature; 2019 Nov; 575(7783):545-550. PubMed ID: 31581174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivalent assembly of KRAS with the RAS-binding and cysteine-rich domains of CRAF on the membrane.
    Fang Z; Lee KY; Huo KG; Gasmi-Seabrook G; Zheng L; Moghal N; Tsao MS; Ikura M; Marshall CB
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12101-12108. PubMed ID: 32414921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal Structure Reveals the Full Ras-Raf Interface and Advances Mechanistic Understanding of Raf Activation.
    Cookis T; Mattos C
    Biomolecules; 2021 Jul; 11(7):. PubMed ID: 34356620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization.
    Liau NPD; Wendorff TJ; Quinn JG; Steffek M; Phung W; Liu P; Tang J; Irudayanathan FJ; Izadi S; Shaw AS; Malek S; Hymowitz SG; Sudhamsu J
    Nat Struct Mol Biol; 2020 Feb; 27(2):134-141. PubMed ID: 31988522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases.
    Kondo Y; Ognjenović J; Banerjee S; Karandur D; Merk A; Kulhanek K; Wong K; Roose JP; Subramaniam S; Kuriyan J
    Science; 2019 Oct; 366(6461):109-115. PubMed ID: 31604311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain.
    Travers T; López CA; Van QN; Neale C; Tonelli M; Stephen AG; Gnanakaran S
    Sci Rep; 2018 May; 8(1):8461. PubMed ID: 29855542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of the oncogenic BRAF
    Cope NJ; Novak B; Liu Z; Cavallo M; Gunderwala AY; Connolly M; Wang Z
    J Biol Chem; 2020 Feb; 295(8):2407-2420. PubMed ID: 31929109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RASopathy mutations provide functional insight into the BRAF cysteine-rich domain and reveal the importance of autoinhibition in BRAF regulation.
    Spencer-Smith R; Terrell EM; Insinna C; Agamasu C; Wagner ME; Ritt DA; Stauffer J; Stephen AG; Morrison DK
    Mol Cell; 2022 Nov; 82(22):4262-4276.e5. PubMed ID: 36347258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization.
    Garnett MJ; Rana S; Paterson H; Barford D; Marais R
    Mol Cell; 2005 Dec; 20(6):963-9. PubMed ID: 16364920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimerization Induced by C-Terminal 14-3-3 Binding Is Sufficient for BRAF Kinase Activation.
    Liau NPD; Venkatanarayan A; Quinn JG; Phung W; Malek S; Hymowitz SG; Sudhamsu J
    Biochemistry; 2020 Oct; 59(41):3982-3992. PubMed ID: 32970425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dimerization-dependent mechanism drives RAF catalytic activation.
    Rajakulendran T; Sahmi M; Lefrançois M; Sicheri F; Therrien M
    Nature; 2009 Sep; 461(7263):542-5. PubMed ID: 19727074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation.
    Tran TH; Chan AH; Young LC; Bindu L; Neale C; Messing S; Dharmaiah S; Taylor T; Denson JP; Esposito D; Nissley DV; Stephen AG; McCormick F; Simanshu DK
    Nat Commun; 2021 Feb; 12(1):1176. PubMed ID: 33608534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and role of Raf-1/B-Raf heterodimerization.
    Rushworth LK; Hindley AD; O'Neill E; Kolch W
    Mol Cell Biol; 2006 Mar; 26(6):2262-72. PubMed ID: 16508002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution and characterization of BRAF in complex with 14-3-3 and KRAS4B on nanodiscs.
    Liu NF; Enomoto M; Marshall CB; Ikura M
    Protein Sci; 2024 Jun; 33(6):e5016. PubMed ID: 38747381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quaternary assembly of KRas4B with Raf-1 at the membrane.
    Jang H; Zhang M; Nussinov R
    Comput Struct Biotechnol J; 2020; 18():737-748. PubMed ID: 32257057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation.
    Verkhivker GM
    Mol Biosyst; 2016 Oct; 12(10):3146-65. PubMed ID: 27481329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural snapshots of RAF kinase interactions.
    Rezaei Adariani S; Buchholzer M; Akbarzadeh M; Nakhaei-Rad S; Dvorsky R; Ahmadian MR
    Biochem Soc Trans; 2018 Dec; 46(6):1393-1406. PubMed ID: 30381334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.