BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33711442)

  • 1. Addition of hydrophobic side chains improve the apoptosis inducibility of the human glyoxalase I inhibitor, TLSC702.
    Azuma M; Inoue M; Nishida A; Akahane H; Kitajima M; Natani S; Chimori R; Yoshimori A; Mano Y; Uchiro H; Tanuma SI; Takasawa R
    Bioorg Med Chem Lett; 2021 May; 40():127918. PubMed ID: 33711442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells.
    Takasawa R; Shimada N; Uchiro H; Takahashi S; Yoshimori A; Tanuma S
    Biol Pharm Bull; 2016; 39(5):869-73. PubMed ID: 27150153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of human glyoxalase I and its complex with TLSC702 reveal inhibitor binding mode and substrate preference.
    Usami M; Ando K; Shibuya A; Takasawa R; Yokoyama H
    FEBS Lett; 2022 Jun; 596(11):1458-1467. PubMed ID: 35363883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells.
    Shimada N; Takasawa R; Tanuma SI
    Arch Biochem Biophys; 2018 Jan; 638():1-7. PubMed ID: 29225125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I.
    Takasawa R; Akahane H; Tanaka H; Shimada N; Yamamoto T; Uchida-Maruki H; Sai M; Yoshimori A; Tanuma SI
    Bioorg Med Chem Lett; 2017 Mar; 27(5):1169-1174. PubMed ID: 28169168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a new type inhibitor of human glyoxalase I by myricetin-based 4-point pharmacophore.
    Takasawa R; Tao A; Saeki K; Shionozaki N; Tanaka R; Uchiro H; Takahashi S; Yoshimori A; Tanuma S
    Bioorg Med Chem Lett; 2011 Jul; 21(14):4337-42. PubMed ID: 21669529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delphinidin, a dietary anthocyanidin in berry fruits, inhibits human glyoxalase I.
    Takasawa R; Saeki K; Tao A; Yoshimori A; Uchiro H; Fujiwara M; Tanuma S
    Bioorg Med Chem; 2010 Oct; 18(19):7029-33. PubMed ID: 20801663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Armed 1,2,3-Selenadiazole and 1,2,3-Thiadiazole Benzene Derivatives as Novel Glyoxalase-I Inhibitors.
    Al-Balas QA; Al-Smadi ML; Hassan MA; Al Jabal GA; Almaaytah AM; Alzoubi KH
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies.
    Yadav A; Kumar R; Sunkaria A; Singhal N; Kumar M; Sandhir R
    J Biomol Struct Dyn; 2016 May; 34(5):993-1007. PubMed ID: 26108947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular docking and dynamic studies of a potential therapeutic target inhibiting glyoxalase system: Metabolic action of the 3, 3 '- [3- (5-chloro-2-hydroxyphenyl) -3-oxopropane-1, 1-diyl] - Bis-4-hydroxycoumarin leads overexpression of the intracellular level of methylglyoxal and induction of a pro-apoptotic phenomenon in a hepatocellular carcinoma model.
    Taïbi N; Al-Balas QA; Bekari N; Talhi O; Al Jabal GA; Benali Y; Ameraoui R; Hadjadj M; Taïbi A; Boutaiba ZM; Abou-Mustapha M; Khammar F; Dergal F; Hassaine R; Boukenna L; Bachari K; Soares Silva AM
    Chem Biol Interact; 2021 Aug; 345():109511. PubMed ID: 33989593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PKM2 inhibitor shikonin enhances piceatannol-induced apoptosis of glyoxalase I-dependent cancer cells.
    Inoue M; Nakagawa Y; Azuma M; Akahane H; Chimori R; Mano Y; Takasawa R
    Genes Cells; 2024 Jan; 29(1):52-62. PubMed ID: 37963646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel glyoxalase-I inhibitors possessing a "zinc-binding feature" as potential anticancer agents.
    Al-Balas QA; Hassan MA; Al-Shar'i NA; Mhaidat NM; Almaaytah AM; Al-Mahasneh FM; Isawi IH
    Drug Des Devel Ther; 2016; 10():2623-9. PubMed ID: 27574401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects.
    Takasawa R; Takahashi S; Saeki K; Sunaga S; Yoshimori A; Tanuma S
    Bioorg Med Chem; 2008 Apr; 16(7):3969-75. PubMed ID: 18258440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking.
    Al-Shar'i NA; Al-Balas QA; Al-Waqfi RA; Hassan MA; Alkhalifa AE; Ayoub NM
    J Comput Aided Mol Des; 2019 Sep; 33(9):799-815. PubMed ID: 31630312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, Synthesis and Biological Evaluation of Potent Human Glyoxalase I Inhibitors.
    Jin T; Zhai J; Liu X; Yue Y; Huang M; Li Z; Ni C; Deng Q; Sang Y; Yao Z; Zhang H; Hu X; Zheng ZB
    Chem Pharm Bull (Tokyo); 2017 May; 65(5):455-460. PubMed ID: 28320998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ellagic acid: A potent glyoxalase-I inhibitor with a unique scaffold.
    Al-Shar'i NA; Al-Balas QA; Hassan MA; El-Elimat TM; Aljabal GA; Almaaytah AM
    Acta Pharm; 2021 Mar; 71(1):115-130. PubMed ID: 32697740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of pharmacophore modeling and 3D-QSAR analysis of potential glyoxalase-I inhibitors as anticancer agents.
    Al-Sha'er MA; Al-Balas QA; Hassan MA; Al Jabal GA; Almaaytah AM
    Comput Biol Chem; 2019 Jun; 80():102-110. PubMed ID: 30947068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by active site directed covalent modification of human glyoxalase I.
    Holewinski RJ; Creighton DJ
    Bioorg Med Chem; 2014 Jul; 22(13):3301-8. PubMed ID: 24856185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory Effect of Isoflavones from Erythrina poeppigiana on the Growth of HL-60 Human Leukemia Cells through Inhibition of Glyoxalase I.
    Hikita K; Yamada S; Shibata R; Katoh M; Murata T; Kato K; Tanaka H; Kaneda N
    Nat Prod Commun; 2015 Sep; 10(9):1581-4. PubMed ID: 26594764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis and biological evaluation of novel glyoxalase I inhibitors possessing diazenylbenzenesulfonamide moiety as potential anticancer agents.
    Al-Oudat BA; Jaradat HM; Al-Balas QA; Al-Shar'i NA; Bryant-Friedrich A; Bedi MF
    Bioorg Med Chem; 2020 Aug; 28(16):115608. PubMed ID: 32690268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.