These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33711614)

  • 1. Effects of augmented somatosensory input using vibratory insoles to improve walking in individuals with chronic post-stroke hemiparesis.
    Liang JN; Ho KY; Hung V; Reilly A; Wood R; Yuskov N; Lee YJ
    Gait Posture; 2021 May; 86():77-82. PubMed ID: 33711614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow Walking in Individuals with Chronic Post-Stroke Hemiparesis: Speed Mediated Effects of Gait Kinetics and Ankle Kinematics.
    Liang JN; Ho KY; Lee YJ; Ackley C; Aki K; Arias J; Trinh J
    Brain Sci; 2021 Mar; 11(3):. PubMed ID: 33805603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):57-62. PubMed ID: 15996593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Cuff Weights for Aquatic Gait Training in People Post-Stroke with Hemiparesis.
    Nishiyori R; Lai B; Lee DK; Vrongistinos K; Jung T
    Physiother Res Int; 2016 Mar; 21(1):47-53. PubMed ID: 25530505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):51-6. PubMed ID: 15996592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people.
    Lipsitz LA; Lough M; Niemi J; Travison T; Howlett H; Manor B
    Arch Phys Med Rehabil; 2015 Mar; 96(3):432-9. PubMed ID: 25450133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired H-Reflex Adaptations Following Slope Walking in Individuals With Post-stroke Hemiparesis.
    Liang JN; Lee YJ; Akoopie E; Kleven BC; Koch T; Ho KY
    Front Physiol; 2019; 10():1232. PubMed ID: 31632287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinematics of paretic lower limb in aquatic gait with equipment in people with post-stroke hemiparesis.
    Pereira JA; de Souza KK; Pereira SM; Ruschel C; Hubert M; Michaelsen SM
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():16-22. PubMed ID: 31382199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination of the non-paretic leg during hemiparetic gait: expected and novel compensatory patterns.
    Raja B; Neptune RR; Kautz SA
    Clin Biomech (Bristol, Avon); 2012 Dec; 27(10):1023-30. PubMed ID: 22981679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis.
    Alam Z; Rendos NK; Vargas AM; Makanjuola J; Kesar TM
    Gait Posture; 2022 Jul; 96():275-278. PubMed ID: 35716486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of vibrating shoe insoles on standing balance, walking, and ankle-foot muscle activity in adults with diabetic peripheral neuropathy.
    Hatton AL; Chatfield MD; Cattagni T; Vicenzino B
    Gait Posture; 2024 Jun; 111():8-13. PubMed ID: 38603968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of walking with loads above the ankle on gait parameters of persons with hemiparesis after stroke.
    Duclos C; Nadeau S; Bourgeois N; Bouyer L; Richards CL
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):265-71. PubMed ID: 24405568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tempo-spatial gait adaptations in stroke patients when approaching and crossing an elevated surface.
    Hösl M; Egger M; Bergmann J; Amberger T; Mueller F; Jahn K
    Gait Posture; 2019 Sep; 73():279-285. PubMed ID: 31394371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifiable patterns of limb loading and unloading during hemiparetic gait: Relation to kinetic and kinematic parameters.
    Raja B; Neptune RR; Kautz SA
    J Rehabil Res Dev; 2012; 49(9):1293-304. PubMed ID: 23408212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered post-stroke propulsion is related to paretic swing phase kinematics.
    Dean JC; Bowden MG; Kelly AL; Kautz SA
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():24-30. PubMed ID: 31809919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.