These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33711646)

  • 1. A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions.
    Yuan Y; Ma J; Ai H; Kang B; Lee JY
    J Colloid Interface Sci; 2021 Jun; 592():440-447. PubMed ID: 33711646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishing theoretical landscapes for identifying basal plane active sites in MBene toward multifunctional HER, OER, and ORR catalysts.
    Zhang Y; Zhang Y; Guo Z; Fang Y; Tang C; Miao N; Sa B; Zhou J; Sun Z
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1954-1964. PubMed ID: 37690303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. γ-Graphyne nanotubes as defect-free catalysts of the oxygen reduction reaction: a DFT investigation.
    Yuan Y; Wu S; Ai H; Lee JY; Kang B
    Phys Chem Chem Phys; 2020 Apr; 22(16):8633-8638. PubMed ID: 32267268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Investigation of HER and OER Electrocatalysts Based on the 2D R-graphyne Completely Composed of Anti-Aromatic Carbon Rings.
    Li C; Li T; Yu G; Chen W
    Molecules; 2023 May; 28(9):. PubMed ID: 37175298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Design of Ni
    Jia J; Tian D
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical screening of VSe
    Wang Y; Wan J; Tian W; Hou Z; Gu X; Wang Y
    J Colloid Interface Sci; 2021 May; 590():210-218. PubMed ID: 33548604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Determination of Active Sites of Ni Metal-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Dong Y; Dang J; Wang W; Yin S; Wang Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39624-39630. PubMed ID: 30362712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms.
    Chen X
    Phys Chem Chem Phys; 2015 Nov; 17(43):29340-3. PubMed ID: 26473179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical insight into single Rh atoms anchored on N-doped γ-graphyne as an excellent bifunctional electrocatalyst for the OER and ORR: electronic regulation of graphitic nitrogen.
    Qin Y; Yang M; Deng C; Shen W; He R; Li M
    Nanoscale; 2021 Mar; 13(11):5800-5808. PubMed ID: 33710226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of Competitive Electrocatalysts for Hydrogen Fuel Cells.
    Stolbov S; Alcántara Ortigoza M
    J Phys Chem Lett; 2012 Feb; 3(4):463-7. PubMed ID: 26286047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.
    Yadav RM; Wu J; Kochandra R; Ma L; Tiwary CS; Ge L; Ye G; Vajtai R; Lou J; Ajayan PM
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11991-2000. PubMed ID: 25970133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Descriptor-Driven Computational Design of Bifunctional Double-Atom Hydrogen Evolution and Oxidation Reaction Electrocatalysts for Rechargeable Hydrogen Gas Batteries.
    Liu Z; Yang J; Wang F; Yuan Y; Jiang T; Zhu Z; Li K; Liu S; Zhang K; Wang W; Chuai M; Sun J; Wu Y; Chen W
    Nano Lett; 2022 Oct; 22(19):7860-7866. PubMed ID: 36166748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description.
    Liu X; Zhang Y; Wang W; Chen Y; Xiao W; Liu T; Zhong Z; Luo Z; Ding Z; Zhang Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1249-1259. PubMed ID: 34941239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of efficient transition metal core-shell electrocatalysts for oxygen reduction and evolution reactions.
    Zhao Z; D'Souza J; Chen F; Xia Z
    RSC Adv; 2018 Dec; 9(1):536-542. PubMed ID: 35521622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.
    Liu S; Wang Z; Zhou S; Yu F; Yu M; Chiang CY; Zhou W; Zhao J; Qiu J
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28627127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions.
    Hu R; Li Y; Wang F; Shang J
    Nanoscale; 2020 Oct; 12(39):20413-20424. PubMed ID: 33026034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect Engineering for Fuel-Cell Electrocatalysts.
    Li W; Wang D; Zhang Y; Tao L; Wang T; Zou Y; Wang Y; Chen R; Wang S
    Adv Mater; 2020 May; 32(19):e1907879. PubMed ID: 32176409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance.
    Jiao Y; Zheng Y; Jaroniec M; Qiao SZ
    J Am Chem Soc; 2014 Mar; 136(11):4394-403. PubMed ID: 24580116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanotube/Boron Nitride Nanocomposite as a Significant Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions.
    Patil IM; Lokanathan M; Ganesan B; Swami A; Kakade B
    Chemistry; 2017 Jan; 23(3):676-683. PubMed ID: 27709715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.