These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33711741)

  • 1. Learning to map 2D ultrasound images into 3D space with minimal human annotation.
    Yeung PH; Aliasi M; Papageorghiou AT; Haak M; Xie W; Namburete AIL
    Med Image Anal; 2021 May; 70():101998. PubMed ID: 33711741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography.
    Huang R; Xie W; Alison Noble J
    Med Image Anal; 2018 Jul; 47():127-139. PubMed ID: 29715691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully-automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning.
    Namburete AIL; Xie W; Yaqub M; Zisserman A; Noble JA
    Med Image Anal; 2018 May; 46():1-14. PubMed ID: 29499436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based plane pose regression in obstetric ultrasound.
    Di Vece C; Dromey B; Vasconcelos F; David AL; Peebles D; Stoyanov D
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):833-839. PubMed ID: 35489005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-supervised learning for accelerated 3D high-resolution ultrasound imaging.
    Dai X; Lei Y; Wang T; Axente M; Xu D; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Jul; 48(7):3916-3926. PubMed ID: 33993508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorless volumetric reconstruction of fetal brain freehand ultrasound scans with deep implicit representation.
    Yeung PH; Hesse LS; Aliasi M; Haak MC; ; Xie W; Namburete AIL
    Med Image Anal; 2024 May; 94():103147. PubMed ID: 38547665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization and Registration of 2D Histological Mouse Brain Images in 3D Atlas Space.
    Sadeghi M; Ramos-Prats A; Neto P; Castaldi F; Crowley D; Matulewicz P; Paradiso E; Freysinger W; Ferraguti F; Goebel G
    Neuroinformatics; 2023 Jul; 21(3):615-630. PubMed ID: 37357231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing in 2D to reduce the annotation effort for 3D deep delineation of linear structures.
    Koziński M; Mosinska A; Salzmann M; Fua P
    Med Image Anal; 2020 Feb; 60():101590. PubMed ID: 31841949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of Image Registration for Ultrasound-Guided Prostate Radiotherapy Based on Similarity Measurement by a Convolutional Neural Network.
    Zhu N; Najafi M; Han B; Hancock S; Hristov D
    Technol Cancer Res Treat; 2019 Jan; 18():1533033818821964. PubMed ID: 30803364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards automated extraction of 2D standard fetal head planes from 3D ultrasound acquisitions: A clinical evaluation and quality assessment comparison.
    Skelton E; Matthew J; Li Y; Khanal B; Cerrolaza Martinez JJ; Toussaint N; Gupta C; Knight C; Kainz B; Hajnal JV; Rutherford M
    Radiography (Lond); 2021 May; 27(2):519-526. PubMed ID: 33272825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound volume projection image quality selection by ranking from convolutional RankNet.
    Lyu J; Ling SH; Banerjee S; Zheng JY; Lai KL; Yang D; Zheng YP; Bi X; Su S; Chamoli U
    Comput Med Imaging Graph; 2021 Apr; 89():101847. PubMed ID: 33476927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakly supervised learning-based 3D bladder reconstruction from 2D ultrasound images for bladder volume measurement.
    Peng Z; Shan H; Yang X; Li S; Tang D; Cao Y; Shao Q; Huo W; Yang Z
    Med Phys; 2024 Feb; 51(2):1277-1288. PubMed ID: 37486288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BEAN: Brain Extraction and Alignment Network for 3D Fetal Neurosonography.
    Moser F; Huang R; ; Papież BW; Namburete AIL
    Neuroimage; 2022 Sep; 258():119341. PubMed ID: 35654376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Supervised Ultrasound to MRI Fetal Brain Image Synthesis.
    Jiao J; Namburete AIL; Papageorghiou AT; Noble JA
    IEEE Trans Med Imaging; 2020 Dec; 39(12):4413-4424. PubMed ID: 32833630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weakly-supervised learning for catheter segmentation in 3D frustum ultrasound.
    Yang H; Shan C; Kolen AF; With PHN
    Comput Med Imaging Graph; 2022 Mar; 96():102037. PubMed ID: 35121377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.