These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33711825)
1. Quantify the combined effects of temperature and force on the stability of DNA hairpin. Li L; Wang H; Xiong C; Luo D; Chen H; Liu Y J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33711825 [TBL] [Abstract][Full Text] [Related]
2. Free energy profile of RNA hairpins: a molecular dynamics simulation study. Deng NJ; Cieplak P Biophys J; 2010 Feb; 98(4):627-36. PubMed ID: 20159159 [TBL] [Abstract][Full Text] [Related]
3. Stability of DNA and RNA hairpins: a comparative study based on ox-DNA. Yang C; Song X; Feng Y; Zhao G; Liu Y J Phys Condens Matter; 2023 Apr; 35(26):. PubMed ID: 36972608 [TBL] [Abstract][Full Text] [Related]
4. Transition-Path Probability as a Test of Reaction-Coordinate Quality Reveals DNA Hairpin Folding Is a One-Dimensional Diffusive Process. Neupane K; Manuel AP; Lambert J; Woodside MT J Phys Chem Lett; 2015 Mar; 6(6):1005-10. PubMed ID: 26262860 [TBL] [Abstract][Full Text] [Related]
5. Free energy landscape and folding mechanism of a beta-hairpin in explicit water: a replica exchange molecular dynamics study. Nguyen PH; Stock G; Mittag E; Hu CK; Li MS Proteins; 2005 Dec; 61(4):795-808. PubMed ID: 16240446 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamics and kinetics of an A-U RNA base pair under force studied by molecular dynamics simulations. Yu T; Liu T; Wang Y; Zhang S; Zhang W Phys Rev E; 2023 Feb; 107(2-1):024404. PubMed ID: 36932572 [TBL] [Abstract][Full Text] [Related]
7. Compaction and tensile forces determine the accuracy of folding landscape parameters from single molecule pulling experiments. Morrison G; Hyeon C; Hinczewski M; Thirumalai D Phys Rev Lett; 2011 Apr; 106(13):138102. PubMed ID: 21517423 [TBL] [Abstract][Full Text] [Related]
8. Measuring the folding landscape of a harmonically constrained biopolymer. de Messieres M; Brawn-Cinani B; La Porta A Biophys J; 2011 Jun; 100(11):2736-44. PubMed ID: 21641319 [TBL] [Abstract][Full Text] [Related]
9. Topography of the free-energy landscape probed via mechanical unfolding of proteins. Kirmizialtin S; Huang L; Makarov DE J Chem Phys; 2005 Jun; 122(23):234915. PubMed ID: 16008495 [TBL] [Abstract][Full Text] [Related]
10. Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences. Best RB; Mittal J Proteins; 2011 Apr; 79(4):1318-28. PubMed ID: 21322056 [TBL] [Abstract][Full Text] [Related]
11. Force-Dependent Folding and Unfolding Kinetics in DNA Hairpins Reveals Transition-State Displacements along a Single Pathway. Alemany A; Ritort F J Phys Chem Lett; 2017 Mar; 8(5):895-900. PubMed ID: 28150950 [TBL] [Abstract][Full Text] [Related]
12. Counterion and polythymidine loop-length-dependent folding and thermodynamic stability of DNA hairpins reveal the unusual counterion-dependent stability of tetraloop hairpins. Nayak RK; Van Orden A J Phys Chem B; 2013 Nov; 117(45):13956-66. PubMed ID: 24144397 [TBL] [Abstract][Full Text] [Related]
13. Kinetics and dynamics of DNA hybridization. Yin Y; Zhao XS Acc Chem Res; 2011 Nov; 44(11):1172-81. PubMed ID: 21718008 [TBL] [Abstract][Full Text] [Related]
14. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability. Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551 [TBL] [Abstract][Full Text] [Related]
15. Combining temperature and force to study folding of an RNA hairpin. Stephenson W; Keller S; Santiago R; Albrecht JE; Asare-Okai PN; Tenenbaum SA; Zuker M; Li PT Phys Chem Chem Phys; 2014 Jan; 16(3):906-17. PubMed ID: 24276015 [TBL] [Abstract][Full Text] [Related]
16. Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins. Chakraborty D; Collepardo-Guevara R; Wales DJ J Am Chem Soc; 2014 Dec; 136(52):18052-61. PubMed ID: 25453221 [TBL] [Abstract][Full Text] [Related]
17. Quantification of macromolecule crowding at single-molecule level. Liang T; Yang C; Song X; Feng Y; Liu Y; Chen H Phys Rev E; 2023 Jul; 108(1-1):014406. PubMed ID: 37583195 [TBL] [Abstract][Full Text] [Related]
18. Dual energy landscape: the functional state of the β-barrel outer membrane protein G molds its unfolding energy landscape. Damaghi M; Sapra KT; Köster S; Yildiz Ö; Kühlbrandt W; Muller DJ Proteomics; 2010 Dec; 10(23):4151-62. PubMed ID: 21058339 [TBL] [Abstract][Full Text] [Related]
19. Force Dependence of Proteins' Transition State Position and the Bell-Evans Model. Rico-Pasto M; Zaltron A; Ritort F Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835787 [TBL] [Abstract][Full Text] [Related]
20. The nature of the free energy barriers to two-state folding. Akmal A; Muñoz V Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]