These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 33711857)
1. Polythionate degradation by tetrathionate hydrolase of de Jong GAH; Hazeu W; Bos P; Kuenen JG Microbiology (Reading); 1997 Feb; 143(2):499-504. PubMed ID: 33711857 [TBL] [Abstract][Full Text] [Related]
2. Isolation of the tetrathionate hydrolase from Thiobacillus acidophilus. De Jong GA; Hazeu W; Bos P; Kuenen JG Eur J Biochem; 1997 Feb; 243(3):678-83. PubMed ID: 9057831 [TBL] [Abstract][Full Text] [Related]
3. Purification and partial characterization of a thermostable trithionate hydrolase from the acidophilic sulphur oxidizer Thiobacillus acidophilus. Meulenberg R; Pronk JT; Frank J; Hazeu W; Bos P; Kuenen JG Eur J Biochem; 1992 Oct; 209(1):367-74. PubMed ID: 1396709 [TBL] [Abstract][Full Text] [Related]
4. Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown Acidithiobacillus ferrooxidans ATCC 23270 cells. Sugio T; Taha TM; Takeuchi F Biosci Biotechnol Biochem; 2009 Jun; 73(6):1381-6. PubMed ID: 19502725 [TBL] [Abstract][Full Text] [Related]
5. Purification and Some Properties of a Tetrathionate Decomposing Enzyme from Thiobacillus thiooxidans. Tano T; Kitaguchi H; Harada M; Nagasawa T; Sugio T Biosci Biotechnol Biochem; 1996 Jan; 60(2):224-7. PubMed ID: 27299398 [TBL] [Abstract][Full Text] [Related]
6. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1. Ng KY; Kamimura K; Sugio T J Biosci Bioeng; 2000; 90(2):193-8. PubMed ID: 16232841 [TBL] [Abstract][Full Text] [Related]
7. Tetrathionate hydrolase from the acidophilic microorganisms. Kanao T Front Microbiol; 2024; 15():1338669. PubMed ID: 38348185 [TBL] [Abstract][Full Text] [Related]
8. Growth of Acidithiobacillus Ferrooxidans ATCC 23270 in Thiosulfate Under Oxygen-Limiting Conditions Generates Extracellular Sulfur Globules by Means of a Secreted Tetrathionate Hydrolase. Beard S; Paradela A; Albar JP; Jerez CA Front Microbiol; 2011; 2():79. PubMed ID: 21833324 [TBL] [Abstract][Full Text] [Related]
9. EFFECT OF THIOL-BINDING REAGENTS ON THE METABOLISM OF THIOSULFATE AND TETRATHIONATE BY THIOBACILLUS NEAPOLITANUS. TRUDINGER PA J Bacteriol; 1965 Mar; 89(3):617-25. PubMed ID: 14273636 [TBL] [Abstract][Full Text] [Related]
10. A kinetic study of rearrangement and degradation reactions of tetrathionate and trithionate in near-neutral solutions. Zhang H; Jeffrey MI Inorg Chem; 2010 Nov; 49(22):10273-82. PubMed ID: 20961089 [TBL] [Abstract][Full Text] [Related]
11. Localization, purification and properties of a tetrathionate hydrolase from Acidithiobacillus caldus. Bugaytsova Z; Lindström EB Eur J Biochem; 2004 Jan; 271(2):272-80. PubMed ID: 14717695 [TBL] [Abstract][Full Text] [Related]
12. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. Eccleston M; Kelly DP J Bacteriol; 1978 Jun; 134(3):718-27. PubMed ID: 26665 [TBL] [Abstract][Full Text] [Related]
13. Tetrathionate-forming thiosulfate dehydrogenase from the acidophilic, chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. Kikumoto M; Nogami S; Kanao T; Takada J; Kamimura K Appl Environ Microbiol; 2013 Jan; 79(1):113-20. PubMed ID: 23064330 [TBL] [Abstract][Full Text] [Related]
14. The sole cysteine residue (Cys301) of tetrathionate hydrolase from Acidithiobacillus ferrooxidans does not play a role in enzyme activity. Kanao T; Nakayama H; Kato M; Kamimura K Biosci Biotechnol Biochem; 2014; 78(12):2030-5. PubMed ID: 25144400 [TBL] [Abstract][Full Text] [Related]
15. Sulfur chemistry in bacterial leaching of pyrite. Schippers A; Jozsa P; Sand W Appl Environ Microbiol; 1996 Sep; 62(9):3424-31. PubMed ID: 16535406 [TBL] [Abstract][Full Text] [Related]
16. Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans. Kanao T; Kamimura K; Sugio T J Biotechnol; 2007 Oct; 132(1):16-22. PubMed ID: 17904676 [TBL] [Abstract][Full Text] [Related]
17. Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Hazeu W; Bijleveld W; Grotenhuis JT; Kakes E; Kuenen JG Antonie Van Leeuwenhoek; 1986; 52(6):507-18. PubMed ID: 3813523 [TBL] [Abstract][Full Text] [Related]
18. Oxygen-sulfur species distribution and kinetic analysis in the hydrogen peroxide-thiosulfate system. Lu Y; Gao Q; Xu L; Zhao Y; Epstein IR Inorg Chem; 2010 Jul; 49(13):6026-34. PubMed ID: 20515027 [TBL] [Abstract][Full Text] [Related]
19. Oxidative metabolism of inorganic sulfur compounds by bacteria. Kelly DP; Shergill JK; Lu WP; Wood AP Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):95-107. PubMed ID: 9049021 [TBL] [Abstract][Full Text] [Related]
20. Reaction mechanism of tetrathionate hydrolysis based on the crystal structure of tetrathionate hydrolase from Acidithiobacillus ferrooxidans. Kanao T; Hase N; Nakayama H; Yoshida K; Nishiura K; Kosaka M; Kamimura K; Hirano Y; Tamada T Protein Sci; 2021 Feb; 30(2):328-338. PubMed ID: 33103311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]