These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 33711884)
1. Effects of alternative methyl group acceptors on the growth energetics of the Kappler O; Janssen PH; Kreft JU; Schink B Microbiology (Reading); 1997 Apr; 143(4):1105-1114. PubMed ID: 33711884 [TBL] [Abstract][Full Text] [Related]
2. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Liesack W; Bak F; Kreft JU; Stackebrandt E Arch Microbiol; 1994; 162(1-2):85-90. PubMed ID: 8085918 [TBL] [Abstract][Full Text] [Related]
3. O-demethylation by the homoacetogenic anaerobe Holophaga foetida studied by a new photometric methylation assay using electrochemically produced cob(I)alamin. Kreft JU; Schink B Eur J Biochem; 1994 Dec; 226(3):945-51. PubMed ID: 7813485 [TBL] [Abstract][Full Text] [Related]
4. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae. Lis AV; Schneider K; Weber J; Keasling JD; Jensen MK; Klein T Microb Cell Fact; 2019 Mar; 18(1):50. PubMed ID: 30857529 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Liu Y; El Masoudi A; Pronk JT; van Gulik WM Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494 [TBL] [Abstract][Full Text] [Related]
6. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. Fonseca GG; Gombert AK; Heinzle E; Wittmann C FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766 [TBL] [Abstract][Full Text] [Related]
7. Nicotinate catabolism is dispensable and nicotinate anabolism is crucial in Azorhizobium caulinodans growing in batch culture and chemostat culture on N2 as The N source. Pronk AF; Stouthamer AH; Van Verseveld HW; Boogerd FC J Bacteriol; 1995 Jan; 177(1):75-81. PubMed ID: 7798152 [TBL] [Abstract][Full Text] [Related]
8. Amino Acid and Sugar Catabolism in the Marine Bacterium Phaeobacter inhibens DSM 17395 from an Energetic Viewpoint. Wünsch D; Trautwein K; Scheve S; Hinrichs C; Feenders C; Blasius B; Schomburg D; Rabus R Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604772 [TBL] [Abstract][Full Text] [Related]
9. Chemostat enrichment and isolation of Hyphomicrobium EG. A dimethyl-sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1. Suylen GM; Kuenen JG Antonie Van Leeuwenhoek; 1986; 52(4):281-93. PubMed ID: 3767349 [TBL] [Abstract][Full Text] [Related]
10. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. Dauner M; Storni T; Sauer U J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290 [TBL] [Abstract][Full Text] [Related]
11. The pH mediated effects of initial glucose concentration on the transitory occurrence of extracellular metabolites, gas exchange and growth yields of aerobic batch cultures of Klebsiella pneumoniae. Iversen JJ Biotechnol Bioeng; 1987 Aug; 30(3):352-62. PubMed ID: 18581368 [TBL] [Abstract][Full Text] [Related]
12. Influence of metabolic end-products on the growth efficiency of Klebsiella aerogenes in anaerobic chemostat culture. Teixeira de Mattos MJ; Plomp PJ; Neijssel OM; Tempest DW Antonie Van Leeuwenhoek; 1984; 50(5-6):461-72. PubMed ID: 6442120 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic c(1) metabolism of the o-methyl-C-labeled substituent of vanillate. Frazer AC; Young LY Appl Environ Microbiol; 1986 Jan; 51(1):84-7. PubMed ID: 16346978 [TBL] [Abstract][Full Text] [Related]
14. Model of energy uncoupling for substrate-sufficient culture. Liu Y; Chen GH Biotechnol Bioeng; 1997 Aug; 55(3):571-6. PubMed ID: 18636525 [TBL] [Abstract][Full Text] [Related]
15. The role of oxygen limitation in the formation of poly- -hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Senior PJ; Beech GA; Ritchie GA; Dawes EA Biochem J; 1972 Aug; 128(5):1193-201. PubMed ID: 4643700 [TBL] [Abstract][Full Text] [Related]
16. Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures. Johanson A; Goel A; Olsson L; Franzén CJ Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953330 [TBL] [Abstract][Full Text] [Related]
17. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
18. Environmental regulation of carbohydrate metabolism by Streptococcus sanguis NCTC 7865 grown in a chemostat. Marsh PD; McDermid AS; Keevil CW; Ellwood DC J Gen Microbiol; 1985 Oct; 131(10):2505-14. PubMed ID: 2999295 [TBL] [Abstract][Full Text] [Related]
19. Phenyl methyl ethers: novel electron donors for respiratory growth of Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S. Neumann A; Engelmann T; Schmitz R; Greiser Y; Orthaus A; Diekert G Arch Microbiol; 2004 Mar; 181(3):245-9. PubMed ID: 14758469 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Durner R; Zinn M; Witholt B; Egli T Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]