These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 33712131)
1. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Muthukrishnan L Carbohydr Polym; 2021 May; 260():117774. PubMed ID: 33712131 [TBL] [Abstract][Full Text] [Related]
2. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. Chen Y; Xiong X; Liu X; Cui R; Wang C; Zhao G; Zhi W; Lu M; Duan K; Weng J; Qu S; Ge J J Mater Chem B; 2020 Jul; 8(25):5500-5514. PubMed ID: 32484194 [TBL] [Abstract][Full Text] [Related]
4. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Luo Y; Lin X; Chen B; Wei X Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520 [TBL] [Abstract][Full Text] [Related]
5. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034 [TBL] [Abstract][Full Text] [Related]
6. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355 [TBL] [Abstract][Full Text] [Related]
7. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Im S; Choe G; Seok JM; Yeo SJ; Lee JH; Kim WD; Lee JY; Park SA Int J Biol Macromol; 2022 Apr; 205():520-529. PubMed ID: 35217077 [TBL] [Abstract][Full Text] [Related]
8. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
9. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
10. The use of bacterial polysaccharides in bioprinting. McCarthy RR; Ullah MW; Booth P; Pei E; Yang G Biotechnol Adv; 2019 Dec; 37(8):107448. PubMed ID: 31513840 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial Inks: The Anti-Infective Applications of Bioprinted Bacterial Polysaccharides. McCarthy RR; Ullah MW; Pei E; Yang G Trends Biotechnol; 2019 Nov; 37(11):1155-1159. PubMed ID: 31171377 [TBL] [Abstract][Full Text] [Related]
12. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications. Müller M; Öztürk E; Arlov Ø; Gatenholm P; Zenobi-Wong M Ann Biomed Eng; 2017 Jan; 45(1):210-223. PubMed ID: 27503606 [TBL] [Abstract][Full Text] [Related]
13. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks. Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162 [TBL] [Abstract][Full Text] [Related]
14. Bioprinting and its applications in tissue engineering and regenerative medicine. Aljohani W; Ullah MW; Zhang X; Yang G Int J Biol Macromol; 2018 Feb; 107(Pt A):261-275. PubMed ID: 28870749 [TBL] [Abstract][Full Text] [Related]
15. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157 [TBL] [Abstract][Full Text] [Related]
17. Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting. Lee M; Bae K; Levinson C; Zenobi-Wong M Biofabrication; 2020 Mar; 12(2):025025. PubMed ID: 32078578 [TBL] [Abstract][Full Text] [Related]
18. Development of a bioink using exopolysaccharide from Rhizobium sp. PRIM17. Nagaraj A; Rekha PD Int J Biol Macromol; 2023 Apr; 234():123608. PubMed ID: 36773865 [TBL] [Abstract][Full Text] [Related]
19. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857 [TBL] [Abstract][Full Text] [Related]
20. Techniques and applications in 3D bioprinting with chitosan bio-inks for drug delivery: A review. Yao Z; Feng X; Wang Z; Zhan Y; Wu X; Xie W; Wang Z; Zhang G Int J Biol Macromol; 2024 Oct; 278(Pt 4):134752. PubMed ID: 39214837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]