These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33712187)

  • 1. High-speed atomic force microscopy to study pore-forming proteins.
    Jiao F; Ruan Y; Scheuring S
    Methods Enzymol; 2021; 649():189-217. PubMed ID: 33712187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perforin-2 clockwise hand-over-hand pre-pore to pore transition mechanism.
    Jiao F; Dehez F; Ni T; Yu X; Dittman JS; Gilbert R; Chipot C; Scheuring S
    Nat Commun; 2022 Aug; 13(1):5039. PubMed ID: 36028507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AFM imaging of pore forming proteins.
    Hodel AW; Hammond K; Hoogenboom BW
    Methods Enzymol; 2021; 649():149-188. PubMed ID: 33712186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Insights into Pore Formation by an α-Pore Forming Toxin: Protein and Lipid Bilayer Interactions of Cytolysin A.
    Sathyanarayana P; Visweswariah SS; Ayappa KG
    Acc Chem Res; 2021 Jan; 54(1):120-131. PubMed ID: 33291882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of Lipid Membrane Reorganization Induced by a Pore-Forming Toxin Using High-Speed Atomic Force Microscopy.
    Yilmaz N; Kobayashi T
    ACS Nano; 2015 Aug; 9(8):7960-7. PubMed ID: 26222645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures and functions of the membrane-damaging pore-forming proteins.
    Mondal AK; Chattopadhyay K
    Adv Protein Chem Struct Biol; 2022; 128():241-288. PubMed ID: 35034720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation.
    Yu X; Ni T; Munson G; Zhang P; Gilbert RJC
    EMBO J; 2022 Dec; 41(23):e111857. PubMed ID: 36245269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directly Observing the Lipid-Dependent Self-Assembly and Pore-Forming Mechanism of the Cytolytic Toxin Listeriolysin O.
    Mulvihill E; van Pee K; Mari SA; Müller DJ; Yildiz Ö
    Nano Lett; 2015 Oct; 15(10):6965-73. PubMed ID: 26302195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy.
    Zhang Y; Tunuguntla RH; Choi PO; Noy A
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Study of Lipid and Cholesterol Reorganization Due to Membrane Binding and Pore Formation by Listeriolysin O.
    Cheerla R; Ayappa KG
    J Membr Biol; 2020 Dec; 253(6):535-550. PubMed ID: 33118046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysenin Toxin Membrane Insertion Is pH-Dependent but Independent of Neighboring Lysenins.
    Munguira ILB; Takahashi H; Casuso I; Scheuring S
    Biophys J; 2017 Nov; 113(9):2029-2036. PubMed ID: 29117526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin.
    Leung C; Dudkina NV; Lukoyanova N; Hodel AW; Farabella I; Pandurangan AP; Jahan N; Pires Damaso M; Osmanović D; Reboul CF; Dunstone MA; Andrew PW; Lonnen R; Topf M; Saibil HR; Hoogenboom BW
    Elife; 2014 Dec; 3():e04247. PubMed ID: 25457051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFM to Study Pore-Forming Proteins.
    Unsay JD; García-Sáez AJ
    Methods Mol Biol; 2019; 1886():191-202. PubMed ID: 30374868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-forming toxins in infection and immunity.
    Verma P; Gandhi S; Lata K; Chattopadhyay K
    Biochem Soc Trans; 2021 Feb; 49(1):455-465. PubMed ID: 33492383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging Artificial Membranes Using High-Speed Atomic Force Microscopy.
    Nasrallah H; Vial A; Pocholle N; Soulier J; Costa L; Godefroy C; Bourillot E; Lesniewska E; Milhiet PE
    Methods Mol Biol; 2019; 1886():45-59. PubMed ID: 30374861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entangling roles of cholesterol-dependent interaction and cholesterol-mediated lipid phase heterogeneity in regulating listeriolysin O pore-formation.
    Lata K; Anderluh G; Chattopadhyay K
    Biochem J; 2024 Oct; 481(19):1349-1377. PubMed ID: 39268843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assemblies of pore-forming toxins visualized by atomic force microscopy.
    Yilmaz N; Kobayashi T
    Biochim Biophys Acta; 2016 Mar; 1858(3):500-11. PubMed ID: 26577274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing the Domino-Like Prepore-to-Pore Transition of Streptolysin O by High-Speed AFM.
    Ariyama H
    J Membr Biol; 2023 Feb; 256(1):91-103. PubMed ID: 35980453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging.
    Margheritis E; Kappelhoff S; Cosentino K
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.