BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 33712428)

  • 1. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mechanism of Haa1p and Tye7p in Saccharomyces cerevisiae when fermenting mixed glucose and xylose with or without inhibitors.
    Li B; Wang L; Xie JY; Xia ZY; Xie CY; Tang YQ
    Microb Cell Fact; 2022 May; 21(1):105. PubMed ID: 35643525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.
    Sakihama Y; Hasunuma T; Kondo A
    J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ; Yuan YJ
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation.
    Li YC; Gou ZX; Zhang Y; Xia ZY; Tang YQ; Kida K
    Braz J Microbiol; 2017; 48(4):791-800. PubMed ID: 28629968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production.
    Kumari R; Pramanik K
    J Biosci Bioeng; 2012 Dec; 114(6):622-9. PubMed ID: 22867797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae.
    Chen Y; Sheng J; Jiang T; Stevens J; Feng X; Wei N
    Biotechnol Biofuels; 2016; 9():9. PubMed ID: 26766964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Condition-specific promoter activities in Saccharomyces cerevisiae.
    Xiong L; Zeng Y; Tang RQ; Alper HS; Bai FW; Zhao XQ
    Microb Cell Fact; 2018 Apr; 17(1):58. PubMed ID: 29631591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors.
    Wang X; Jin M; Balan V; Jones AD; Li X; Li BZ; Dale BE; Yuan YJ
    Biotechnol Bioeng; 2014 Jan; 111(1):152-64. PubMed ID: 24404570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural.
    Bajwa PK; Ho CY; Chan CK; Martin VJ; Trevors JT; Lee H
    Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol.
    Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ
    OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis.
    Guo W; Chen Y; Wei N; Feng X
    PLoS One; 2016; 11(8):e0161448. PubMed ID: 27532329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism.
    Jayakody LN; Turner TL; Yun EJ; Kong II; Liu JJ; Jin YS
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8121-8133. PubMed ID: 30027490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass.
    da Silva RR; Zaiter MA; Boscolo M; da Silva R; Gomes E
    Braz J Microbiol; 2023 Jun; 54(2):753-759. PubMed ID: 36826705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C.
    Chen H; Li J; Wan C; Fang Q; Bai F; Zhao X
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31374572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.