These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 33712545)
1. Protein sequence design by conformational landscape optimization. Norn C; Wicky BIM; Juergens D; Liu S; Kim D; Tischer D; Koepnick B; Anishchenko I; ; Baker D; Ovchinnikov S Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33712545 [TBL] [Abstract][Full Text] [Related]
2. The trRosetta server for fast and accurate protein structure prediction. Du Z; Su H; Wang W; Ye L; Wei H; Peng Z; Anishchenko I; Baker D; Yang J Nat Protoc; 2021 Dec; 16(12):5634-5651. PubMed ID: 34759384 [TBL] [Abstract][Full Text] [Related]
3. Modeling disordered regions in proteins using Rosetta. Wang RY; Han Y; Krassovsky K; Sheffler W; Tyka M; Baker D PLoS One; 2011; 6(7):e22060. PubMed ID: 21829444 [TBL] [Abstract][Full Text] [Related]
4. Sequence-dependent and -independent information in a combined random energy model for protein folding and coding. Pereira de Araújo AF Proteins; 2024 May; 92(5):679-687. PubMed ID: 38158239 [TBL] [Abstract][Full Text] [Related]
5. Iterated local search with partition crossover for computational protein design. Beuvin F; de Givry S; Schiex T; Verel S; Simoncini D Proteins; 2021 Nov; 89(11):1522-1529. PubMed ID: 34228826 [TBL] [Abstract][Full Text] [Related]
6. Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network. Nazet J; Lang E; Merkl R PLoS One; 2021; 16(8):e0256691. PubMed ID: 34437621 [TBL] [Abstract][Full Text] [Related]
7. Funneling and frustration in the energy landscapes of some designed and simplified proteins. Truong HH; Kim BL; Schafer NP; Wolynes PG J Chem Phys; 2013 Sep; 139(12):121908. PubMed ID: 24089720 [TBL] [Abstract][Full Text] [Related]
8. Structure of the space of folding protein sequences defined by large language models. Zambon A; Zecchina R; Tiana G Phys Biol; 2024 Jan; 21(2):. PubMed ID: 38237200 [TBL] [Abstract][Full Text] [Related]
9. A Rosetta-based protein design protocol converging to natural sequences. Sormani G; Harteveld Z; Rosset S; Correia B; Laio A J Chem Phys; 2021 Feb; 154(7):074114. PubMed ID: 33607903 [TBL] [Abstract][Full Text] [Related]
10. Perturbing the energy landscape for improved packing during computational protein design. Maguire JB; Haddox HK; Strickland D; Halabiya SF; Coventry B; Griffin JR; Pulavarti SVSRK; Cummins M; Thieker DF; Klavins E; Szyperski T; DiMaio F; Baker D; Kuhlman B Proteins; 2021 Apr; 89(4):436-449. PubMed ID: 33249652 [TBL] [Abstract][Full Text] [Related]
11. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles. Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915 [TBL] [Abstract][Full Text] [Related]
12. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction. Saleh S; Olson B; Shehu A BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S4. PubMed ID: 24565020 [TBL] [Abstract][Full Text] [Related]
13. Turncoat Polypeptides: We Adapt to Our Environment. Zamora-Carreras H; Maestro B; Sanz JM; Jiménez MA Chembiochem; 2020 Feb; 21(4):432-441. PubMed ID: 31456307 [TBL] [Abstract][Full Text] [Related]
14. Localizing Frustration in Proteins Using All-Atom Energy Functions. Chen J; Schafer NP; Wolynes PG; Clementi C J Phys Chem B; 2019 May; 123(21):4497-4504. PubMed ID: 31063375 [TBL] [Abstract][Full Text] [Related]
15. Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? Sorokina I; Mushegian AR; Koonin EV Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008947 [TBL] [Abstract][Full Text] [Related]
16. Extensive exploration of conformational space improves Rosetta results for short protein domains. Li Y; Bordner AJ; Tian Y; Tao X; Gorin AA Comput Syst Bioinformatics Conf; 2008; 7():203-9. PubMed ID: 19642281 [TBL] [Abstract][Full Text] [Related]
17. SimFold energy function for de novo protein structure prediction: consensus with Rosetta. Fujitsuka Y; Chikenji G; Takada S Proteins; 2006 Feb; 62(2):381-98. PubMed ID: 16294329 [TBL] [Abstract][Full Text] [Related]
18. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model. Liu Y; Beveridge DL Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709 [TBL] [Abstract][Full Text] [Related]
19. The folding energy landscape and free energy excitations of cytochrome c. Weinkam P; Zimmermann J; Romesberg FE; Wolynes PG Acc Chem Res; 2010 May; 43(5):652-60. PubMed ID: 20143816 [TBL] [Abstract][Full Text] [Related]
20. Computational assessment of folding energy landscapes in heterodimeric coiled coils. André I; Bjelic S Proteins; 2018 Jul; 86(7):790-801. PubMed ID: 29675909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]