These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33712678)

  • 1. The FlgN chaperone activates the Na
    Minamino T; Kinoshita M; Morimoto YV; Namba K
    Commun Biol; 2021 Mar; 4(1):335. PubMed ID: 33712678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.
    Minamino T; Morimoto YV; Hara N; Aldridge PD; Namba K
    PLoS Pathog; 2016 Mar; 12(3):e1005495. PubMed ID: 26943926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.
    Minamino T; Kinoshita M; Inoue Y; Morimoto YV; Ihara K; Koya S; Hara N; Nishioka N; Kojima S; Homma M; Namba K
    Microbiologyopen; 2016 Jun; 5(3):424-35. PubMed ID: 26916245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export.
    Minamino T; Namba K
    Nature; 2008 Jan; 451(7177):485-8. PubMed ID: 18216858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the C-terminal cytoplasmic domain of FlhA in bacterial flagellar type III protein export.
    Minamino T; Shimada M; Okabe M; Saijo-Hamano Y; Imada K; Kihara M; Namba K
    J Bacteriol; 2010 Apr; 192(7):1929-36. PubMed ID: 20118266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane voltage-dependent activation mechanism of the bacterial flagellar protein export apparatus.
    Minamino T; Morimoto YV; Kinoshita M; Namba K
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34035173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis.
    Minamino T; Morimoto YV; Kinoshita M; Aldridge PD; Namba K
    Sci Rep; 2014 Dec; 4():7579. PubMed ID: 25531309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates.
    Minamino T; Kinoshita M; Hara N; Takeuchi S; Hida A; Koya S; Glenwright H; Imada K; Aldridge PD; Namba K
    Mol Microbiol; 2012 Feb; 83(4):775-88. PubMed ID: 22233518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuel of the Bacterial Flagellar Type III Protein Export Apparatus.
    Minamino T; Kinoshita M; Namba K
    Methods Mol Biol; 2017; 1593():3-16. PubMed ID: 28389941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA.
    Hara N; Namba K; Minamino T
    PLoS One; 2011; 6(7):e22417. PubMed ID: 21811603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaperone-mediated coupling of subunit availability to activation of flagellar Type III secretion.
    Bryant OJ; Chung BY; Fraser GM
    Mol Microbiol; 2021 Aug; 116(2):538-549. PubMed ID: 33893668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the extreme N-terminal region of FliH with FlhA is required for efficient bacterial flagellar protein export.
    Hara N; Morimoto YV; Kawamoto A; Namba K; Minamino T
    J Bacteriol; 2012 Oct; 194(19):5353-60. PubMed ID: 22843851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export.
    Minamino T; Kinoshita M; Imada K; Namba K
    Mol Microbiol; 2012 Jan; 83(1):168-78. PubMed ID: 22111876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional defect and restoration of temperature-sensitive mutants of FlhA, a subunit of the flagellar protein export apparatus.
    Shimada M; Saijo-Hamano Y; Furukawa Y; Minamino T; Imada K; Namba K
    J Mol Biol; 2012 Feb; 415(5):855-65. PubMed ID: 22178139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus.
    Minamino T; Inoue Y; Kinoshita M; Namba K
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31712281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH.
    Minamino T; González-Pedrajo B; Kihara M; Namba K; Macnab RM
    J Bacteriol; 2003 Jul; 185(13):3983-8. PubMed ID: 12813095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein export through the bacterial flagellar type III export pathway.
    Minamino T
    Biochim Biophys Acta; 2014 Aug; 1843(8):1642-8. PubMed ID: 24064315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export.
    Thomas J; Stafford GP; Hughes C
    Proc Natl Acad Sci U S A; 2004 Mar; 101(11):3945-50. PubMed ID: 15001708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition and targeting mechanisms by chaperones in flagellum assembly and operation.
    Khanra N; Rossi P; Economou A; Kalodimos CG
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9798-803. PubMed ID: 27528687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An energy transduction mechanism used in bacterial flagellar type III protein export.
    Minamino T; Morimoto YV; Hara N; Namba K
    Nat Commun; 2011 Sep; 2():475. PubMed ID: 21934659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.