These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 33712852)

  • 1. Electronic phenotyping of health outcomes of interest using a linked claims-electronic health record database: Findings from a machine learning pilot project.
    Gibson TB; Nguyen MD; Burrell T; Yoon F; Wong J; Dharmarajan S; Ouellet-Hellstrom R; Hua W; Ma Y; Baro E; Bloemers S; Pack C; Kennedy A; Toh S; Ball R
    J Am Med Inform Assoc; 2021 Jul; 28(7):1507-1517. PubMed ID: 33712852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying machine learning approaches for predicting obesity risk using US health administrative claims database.
    Choong C; Brnabic A; Chinthammit C; Ravuri M; Terrell K; Kan H
    BMJ Open Diabetes Res Care; 2024 Sep; 12(5):. PubMed ID: 39327067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Claims-Based Algorithms for Identifying Patients With Pulmonary Hypertension: A Comparison of Decision Rules and Machine-Learning Approaches.
    Ong MS; Klann JG; Lin KJ; Maron BA; Murphy SN; Natter MD; Mandl KD
    J Am Heart Assoc; 2020 Oct; 9(19):e016648. PubMed ID: 32990147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning to identify chronic cough from administrative claims data.
    Bali V; Turzhitsky V; Schelfhout J; Paudel M; Hulbert E; Peterson-Brandt J; Hertzberg J; Kelly NR; Patel RH
    Sci Rep; 2024 Jan; 14(1):2449. PubMed ID: 38291064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study.
    Corey KM; Kashyap S; Lorenzi E; Lagoo-Deenadayalan SA; Heller K; Whalen K; Balu S; Heflin MT; McDonald SR; Swaminathan M; Sendak M
    PLoS Med; 2018 Nov; 15(11):e1002701. PubMed ID: 30481172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using electronic health records to identify candidates for human immunodeficiency virus pre-exposure prophylaxis: An application of super learning to risk prediction when the outcome is rare.
    Gruber S; Krakower D; Menchaca JT; Hsu K; Hawrusik R; Maro JC; Cocoros NM; Kruskal BA; Wilson IB; Mayer KH; Klompas M
    Stat Med; 2020 Oct; 39(23):3059-3073. PubMed ID: 32578905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic ElecTronic hEalth reCord deTection (DETECT) of individuals at risk of a first episode of psychosis: a case-control development and validation study.
    Raket LL; Jaskolowski J; Kinon BJ; Brasen JC; Jönsson L; Wehnert A; Fusar-Poli P
    Lancet Digit Health; 2020 May; 2(5):e229-e239. PubMed ID: 33328055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning-based algorithm to identify U-500R insulin candidates among adults with type 2 diabetes mellitus in US retrospective databases.
    Patel RH; Fan L; Kelly NR; Gelsey F; Hertzberg JK; Brnabic AJM
    Curr Med Res Opin; 2024 Mar; 40(3):367-375. PubMed ID: 38259227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body Mass Index Variable Interpolation to Expand the Utility of Real-world Administrative Healthcare Claims Database Analyses.
    Wu B; Chow W; Sakthivel M; Kakade O; Gupta K; Israel D; Chen YW; Kuruvilla AS
    Adv Ther; 2021 Feb; 38(2):1314-1327. PubMed ID: 33432543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weakly Semi-supervised phenotyping using Electronic Health records.
    Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C
    J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Prediction of Body Mass Index in Real-World Administrative Healthcare Claims Databases.
    Lan G; Wu B; Sharma K; Gadhia K; Ashton V
    Adv Ther; 2022 Aug; 39(8):3835-3844. PubMed ID: 35680715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel electronic health record-based, machine-learning model to predict severe hypoglycemia leading to hospitalizations in older adults with diabetes: A territory-wide cohort and modeling study.
    Shi M; Yang A; Lau ESH; Luk AOY; Ma RCW; Kong APS; Wong RSM; Chan JCM; Chan JCN; Chow E
    PLoS Med; 2024 Apr; 21(4):e1004369. PubMed ID: 38607977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study.
    Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC
    J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Methods of Identifying Anaphylaxis for Medical Product Safety Surveillance Using Natural Language Processing and Machine Learning.
    Carrell DS; Gruber S; Floyd JS; Bann MA; Cushing-Haugen KL; Johnson RL; Graham V; Cronkite DJ; Hazlehurst BL; Felcher AH; Bejan CA; Kennedy A; Shinde MU; Karami S; Ma Y; Stojanovic D; Zhao Y; Ball R; Nelson JC
    Am J Epidemiol; 2023 Feb; 192(2):283-295. PubMed ID: 36331289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of important factors in an inpatient fall risk prediction model to improve the quality of care using EHR and electronic administrative data: A machine-learning approach.
    Lindberg DS; Prosperi M; Bjarnadottir RI; Thomas J; Crane M; Chen Z; Shear K; Solberg LM; Snigurska UA; Wu Y; Xia Y; Lucero RJ
    Int J Med Inform; 2020 Nov; 143():104272. PubMed ID: 32980667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Electronic Health Record Identification of Patients with Rheumatoid Arthritis: Algorithm Pipeline Development and Validation Study.
    Maarseveen TD; Meinderink T; Reinders MJT; Knitza J; Huizinga TWJ; Kleyer A; Simon D; van den Akker EB; Knevel R
    JMIR Med Inform; 2020 Nov; 8(11):e23930. PubMed ID: 33252349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.