These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33713051)

  • 1. The symmetric designer protein Pizza as a scaffold for metal coordination.
    Vrancken JPM; Noguchi H; Zhang KYJ; Tame JRH; Voet ARD
    Proteins; 2021 Mar; ():. PubMed ID: 33713051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular assemblies built with the artificial protein Pizza.
    Vrancken JPM; Aupič J; Addy C; Jerala R; Tame JRH; Voet ARD
    J Struct Biol X; 2020; 4():100027. PubMed ID: 32647829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomineralization of a Cadmium Chloride Nanocrystal by a Designed Symmetrical Protein.
    Voet AR; Noguchi H; Addy C; Zhang KY; Tame JR
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9857-60. PubMed ID: 26136355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Construction of Functional Supramolecular Metalloprotein Assemblies.
    Churchfield LA; Tezcan FA
    Acc Chem Res; 2019 Feb; 52(2):345-355. PubMed ID: 30698941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination geometries for monovalent and divalent metal ions in [His121]azurin--studies using perturbed angular correlations of gamma-rays from 111Ag and 111mCd.
    Danielsen E; Kroes SJ; Canters GW; Bauer R; Hemmingsen L; Singh K; Messerschmidt A
    Eur J Biochem; 1997 Dec; 250(2):249-59. PubMed ID: 9428671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of circular permutations on the structure and stability of a six-fold circular symmetric designer protein.
    Mylemans B; Noguchi H; Deridder E; Lescrinier E; Tame JRH; Voet ARD
    Protein Sci; 2020 Dec; 29(12):2375-2386. PubMed ID: 33006397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving-Williams Behavior.
    Choi TS; Tezcan FA
    J Am Chem Soc; 2022 Oct; 144(39):18090-18100. PubMed ID: 36154053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands.
    Sinha N; Hahn FE
    Acc Chem Res; 2017 Sep; 50(9):2167-2184. PubMed ID: 28841284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries.
    Szunyogh D; Gyurcsik B; Larsen FH; Stachura M; Thulstrup PW; Hemmingsen L; Jancsó A
    Dalton Trans; 2015 Jul; 44(28):12576-88. PubMed ID: 26040991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of metal ion size-based selectivity through chelate ring geometry. metal ion complexing properties of 2,2'-biimidazole.
    Buist D; Williams NJ; Reibenspies JH; Hancock RD
    Inorg Chem; 2010 Jun; 49(11):5033-9. PubMed ID: 20446716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of Dicopper Complexes of N,N,N',N'-Tetrakis[(2-benzimidazolyl)methyl]-2-hydroxy-1,3-diaminopropane with Coordinated Thiocyanate Counterions.
    Zeng WF; Cheng CP; Wang SM; Lee GH
    Inorg Chem; 1996 Apr; 35(8):2259-2267. PubMed ID: 11666422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry of interaction of metal ions with histidine residues in protein structures.
    Chakrabarti P
    Protein Eng; 1990 Oct; 4(1):57-63. PubMed ID: 2290835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Formation of
    Shi Q; Zhou X; Yuan W; Su X; Neniškis A; Wei X; Taujenis L; Snarskis G; Ward JS; Rissanen K; de Mendoza J; Orentas E
    J Am Chem Soc; 2020 Feb; 142(7):3658-3670. PubMed ID: 31983204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the influence of histidine residues on the metal ion binding ability of the wheat metallothionein γ-Ec-1 domain.
    Tarasava K; Freisinger E
    J Inorg Biochem; 2015 Dec; 153():197-203. PubMed ID: 26299797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing the flexibility of peptidic scaffolds to control their copper(II)-coordination properties: a potentiometric and spectroscopic study.
    Fragoso A; Lamosa P; Delgado R; Iranzo O
    Chemistry; 2013 Feb; 19(6):2076-88. PubMed ID: 23293061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming universal restrictions on metal selectivity by protein design.
    Choi TS; Tezcan FA
    Nature; 2022 Mar; 603(7901):522-527. PubMed ID: 35236987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DFT study of isolated histidine interactions with metal ions (Ni
    Franklin LM; Walker SM; Hill G
    J Mol Model; 2020 May; 26(6):116. PubMed ID: 32377871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.
    Hansen WA; Mills JH; Khare SD
    Methods Mol Biol; 2016; 1414():173-85. PubMed ID: 27094291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.