BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33713103)

  • 1. Biosyntheses of geranic acid and citronellic acid from monoterpene alcohols by Saccharomyces cerevisiae.
    Ohashi Y; Huang S; Maeda I
    Biosci Biotechnol Biochem; 2021 May; 85(6):1530-1535. PubMed ID: 33713103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous expression of geraniol dehydrogenase for identifying the metabolic pathways involved in the biotransformation of citral by Acinetobacter sp. Tol 5.
    Usami A; Ishikawa M; Hori K
    Biosci Biotechnol Biochem; 2018 Nov; 82(11):2012-2020. PubMed ID: 30096260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geraniol biotransformation-pathway in spores of Penicillium digitatum.
    Wolken WA; van der Werf MJ
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):731-7. PubMed ID: 11778886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis.
    King A; Richard Dickinson J
    Yeast; 2000 Apr; 16(6):499-506. PubMed ID: 10790686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transformation of terpenoids. I. Identification of metabolites produced by a pseudomonad from citronellal and citral.
    Joglekar SS; Dhavlikar RS
    Appl Microbiol; 1969 Dec; 18(6):1084-7. PubMed ID: 5370660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans.
    Lüddeke F; Wülfing A; Timke M; Germer F; Weber J; Dikfidan A; Rahnfeld T; Linder D; Meyerdierks A; Harder J
    Appl Environ Microbiol; 2012 Apr; 78(7):2128-36. PubMed ID: 22286981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of hop-derived monoterpene alcohols by lager yeast and their contribution to the flavor of hopped beer.
    Takoi K; Koie K; Itoga Y; Katayama Y; Shimase M; Nakayama Y; Watari J
    J Agric Food Chem; 2010 Apr; 58(8):5050-8. PubMed ID: 20364865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J; Bao X; Li C; Shen Y; Hou J
    Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of hop aroma terpenoids by ale and lager yeasts.
    King AJ; Dickinson JR
    FEMS Yeast Res; 2003 Mar; 3(1):53-62. PubMed ID: 12702246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol.
    Höschle B; Jendrossek D
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2277-2283. PubMed ID: 16000717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential enzymes involved in beer monoterpenoids transformation: structures, functions and challenges.
    Jiang Z; Xu C; Wang L; Hong K; Ma C; Lv C
    Crit Rev Food Sci Nutr; 2023; 63(14):2082-2092. PubMed ID: 34459289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.
    Zhao J; Li C; Zhang Y; Shen Y; Hou J; Bao X
    Microb Cell Fact; 2017 Jan; 16(1):17. PubMed ID: 28137282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids.
    Gamero A; Manzanares P; Querol A; Belloch C
    Int J Food Microbiol; 2011 Jan; 145(1):92-7. PubMed ID: 21176987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-reactivity between citral and geraniol - can it be attributed to oxidized geraniol?
    Hagvall L; Bråred Christensson J
    Contact Dermatitis; 2014 Nov; 71(5):280-8. PubMed ID: 25209002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol-specific enzyme for citral biosynthesis.
    Tan CS; Hassan M; Mohamed Hussein ZA; Ismail I; Ho KL; Ng CL; Zainal Z
    Plant Physiol Biochem; 2018 Feb; 123():359-368. PubMed ID: 29304481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the enzymatic formation of citral in the glands of sweet basil.
    Iijima Y; Wang G; Fridman E; Pichersky E
    Arch Biochem Biophys; 2006 Apr; 448(1-2):141-9. PubMed ID: 16150417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effects of geranic acid derivatives on melanin biosynthesis.
    Choi SY
    J Cosmet Sci; 2012; 63(6):351-8. PubMed ID: 23286867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catabolism of geraniol by cell suspension cultures of Citrus limon.
    Berger RG; Akkan Z; Drawert F
    Biochim Biophys Acta; 1990 Dec; 1055(3):234-9. PubMed ID: 2265211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of geraniol metabolism during fermentation.
    Steyer D; Erny C; Claudel P; Riveill G; Karst F; Legras JL
    Food Microbiol; 2013 Apr; 33(2):228-34. PubMed ID: 23200656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.