These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 33713129)

  • 1. Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila.
    Mohr SE; Tattikota SG; Xu J; Zirin J; Hu Y; Perrimon N
    Genetics; 2021 Apr; 217(4):. PubMed ID: 33713129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data.
    Tanevski J; Nguyen T; Truong B; Karaiskos N; Ahsen ME; Zhang X; Shu C; Xu K; Liang X; Hu Y; Pham HV; Xiaomei L; Le TD; Tarca AL; Bhatti G; Romero R; Karathanasis N; Loher P; Chen Y; Ouyang Z; Mao D; Zhang Y; Zand M; Ruan J; Hafemeister C; Qiu P; Tran D; Nguyen T; Gabor A; Yu T; Guinney J; Glaab E; Krause R; Banda P; ; Stolovitzky G; Rajewsky N; Saez-Rodriguez J; Meyer P
    Life Sci Alliance; 2020 Nov; 3(11):. PubMed ID: 32972997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using single-cell RNA sequencing to generate predictive cell-type-specific split-GAL4 reagents throughout development.
    Chen YD; Chen YC; Rajesh R; Shoji N; Jacy M; Lacin H; Erclik T; Desplan C
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2307451120. PubMed ID: 37523539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman-Rafsky non-parametric test.
    Zhang Y; Aevermann BD; Bakken TE; Miller JA; Hodge RD; Lein ES; Scheuermann RH
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33249453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in
    Gupta S; Verma AK; Ahmad S
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33379262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data.
    Sun S; Chen Y; Liu Y; Shang X
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):28. PubMed ID: 30953530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial mapping of single cells in the
    Zand M; Ruan J
    F1000Res; 2020; 9():1014. PubMed ID: 33824719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TIPS: trajectory inference of pathway significance through pseudotime comparison for functional assessment of single-cell RNAseq data.
    Zheng Z; Qiu X; Wu H; Chang L; Tang X; Zou L; Li J; Wu Y; Zhou J; Jiang S; Wan Y; Ni Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 34370020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using single-cell RNA sequencing to generate cell-type-specific split-GAL4 reagents throughout development.
    Chen YD; Chen YC; Rajesh R; Shoji N; Jacy M; Lacin H; Erclik T; Desplan C
    bioRxiv; 2023 Feb; ():. PubMed ID: 36778312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CIPR: a web-based R/shiny app and R package to annotate cell clusters in single cell RNA sequencing experiments.
    Ekiz HA; Conley CJ; Stephens WZ; O'Connell RM
    BMC Bioinformatics; 2020 May; 21(1):191. PubMed ID: 32414321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data.
    Wang T; Nabavi S
    Methods; 2018 Aug; 145():25-32. PubMed ID: 29702224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Transcriptomics: Constructing a Single-Cell Resolution Transcriptome-Wide Expression Atlas.
    Achim K; Vergara HM; Pettit JB
    Methods Mol Biol; 2018; 1649():111-125. PubMed ID: 29130193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets.
    Doddahonnaiah D; Lenehan PJ; Hughes TK; Zemmour D; Garcia-Rivera E; Venkatakrishnan AJ; Chilaka R; Khare A; Kasaraneni A; Garg A; Anand A; Barve R; Thiagarajan V; Soundararajan V
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34200671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial charting of single-cell transcriptomes in tissues.
    Wei R; He S; Bai S; Sei E; Hu M; Thompson A; Chen K; Krishnamurthy S; Navin NE
    Nat Biotechnol; 2022 Aug; 40(8):1190-1199. PubMed ID: 35314812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scClustViz - Single-cell RNAseq cluster assessment and visualization.
    Innes BT; Bader GD
    F1000Res; 2018; 7():. PubMed ID: 31016009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet-based single cell RNAseq tools: a practical guide.
    Salomon R; Kaczorowski D; Valdes-Mora F; Nordon RE; Neild A; Farbehi N; Bartonicek N; Gallego-Ortega D
    Lab Chip; 2019 May; 19(10):1706-1727. PubMed ID: 30997473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Expression Analysis in Single-Cell Transcriptomics.
    Alessandrì L; Arigoni M; Calogero R
    Methods Mol Biol; 2019; 1979():425-432. PubMed ID: 31028652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell type hierarchy reconstruction via reconciliation of multi-resolution cluster tree.
    Peng M; Wamsley B; Elkins AG; Geschwind DH; Wei Y; Roeder K
    Nucleic Acids Res; 2021 Sep; 49(16):e91. PubMed ID: 34125905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized protocol for isolation of high-quality single cells from the female mouse reproductive tract tissues for single-cell RNA sequencing.
    Gurumurthy RK; Kumar N; Chumduri C
    STAR Protoc; 2021 Dec; 2(4):100970. PubMed ID: 34841281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Gene Regulatory Networks from Single-Cell Expression Data.
    Li S; Yan H; Lee J
    Methods Mol Biol; 2021; 2328():153-170. PubMed ID: 34251624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.