BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33713245)

  • 1. Soluble Expression and Catalytic Properties of Codon-Optimized Recombinant Bromelain from MD2 Pineapple in Escherichia coli.
    Razali R; Budiman C; Kamaruzaman KA; Subbiah VK
    Protein J; 2021 Jun; 40(3):406-418. PubMed ID: 33713245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous Expression and Catalytic Properties of Codon-Optimized Small-Sized Bromelain from MD2 Pineapple.
    Razali R; Fahrudin FA; Subbiah VK; Takano K; Budiman C
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of recombinant bromelain of Ananas comosus expressed in a prokaryotic system.
    George S; Bhasker S; Madhav H; Nair A; Chinnamma M
    Mol Biotechnol; 2014 Feb; 56(2):166-74. PubMed ID: 23921698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms.
    Matagne A; Bolle L; El Mahyaoui R; Baeyens-Volant D; Azarkan M
    Phytochemistry; 2017 Jun; 138():29-51. PubMed ID: 28238440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation and activity profiling of fruit bromelain from pineapples of Phuket variety growing in Thailand.
    Han Z; Kraiyot S; Kittikun AH; Zhou W; Li J
    J Food Biochem; 2019 Nov; 43(11):e13011. PubMed ID: 31393018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative structural analysis of fruit and stem bromelain from Ananas comosus.
    Ramli ANM; Manas NHA; Hamid AAA; Hamid HA; Illias RM
    Food Chem; 2018 Nov; 266():183-191. PubMed ID: 30381175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress.
    Raimbault AK; Zuily-Fodil Y; Soler A; Mora P; Cruz de Carvalho MH
    J Plant Physiol; 2013 Nov; 170(16):1442-6. PubMed ID: 23777839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bromelain, a cysteine protease from pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens.
    López-García B; Hernández M; Segundo BS
    Lett Appl Microbiol; 2012 Jul; 55(1):62-7. PubMed ID: 22537505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bromelain: from production to commercialisation.
    Ramli AN; Aznan TN; Illias RM
    J Sci Food Agric; 2017 Mar; 97(5):1386-1395. PubMed ID: 27790704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of bromelain from pineapple (Ananas comosus L.) peel waste.
    Zhou W; Ye C; Geng L; Chen G; Wang X; Chen W; Sa R; Zhang J; Zhang X
    J Food Sci; 2021 Feb; 86(2):385-393. PubMed ID: 33415738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-based alternative method to extract bromelain from pineapple peel waste.
    Novaes LC; Ebinuma Vde C; Mazzola PG; Pessoa A
    Biotechnol Appl Biochem; 2013; 60(5):527-35. PubMed ID: 24011234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations.
    Spir LG; Ataide JA; De Lencastre Novaes LC; Moriel P; Mazzola PG; De Borba Gurpilhares D; Silveira E; Pessoa A; Tambourgi EB
    Biotechnol Prog; 2015; 31(4):937-45. PubMed ID: 25919128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous expression of the plant cysteine protease bromelain and its inhibitor in Pichia pastoris.
    Luniak N; Meiser P; Burkart S; Müller R
    Biotechnol Prog; 2017 Jan; 33(1):54-65. PubMed ID: 27860461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of bromelain subfamily proteases encoded in the pineapple genome.
    Yow AG; Bostan H; Young R; Valacchi G; Gillitt N; Perkins-Veazie P; Xiang QJ; Iorizzo M
    Sci Rep; 2023 Jul; 13(1):11605. PubMed ID: 37463972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of bromelain from pineapple peels.
    Ketnawa S; Chaiwut P; Rawdkuen S
    Food Sci Technol Int; 2011 Aug; 17(4):395-402. PubMed ID: 21813595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability, purification, and applications of bromelain: A review.
    de Lencastre Novaes LC; Jozala AF; Lopes AM; de Carvalho Santos-Ebinuma V; Mazzola PG; Pessoa Junior A
    Biotechnol Prog; 2016; 32(1):5-13. PubMed ID: 26518672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bromelain: an overview of industrial application and purification strategies.
    Arshad ZI; Amid A; Yusof F; Jaswir I; Ahmad K; Loke SP
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7283-97. PubMed ID: 24965557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bromelain enzyme from pineapple: in vitro activity study under different micropropagation conditions.
    Vilanova Neta JL; da Silva Lédo A; Lima AA; Santana JC; Leite NS; Ruzene DS; Silva DP; de Souza RR
    Appl Biochem Biotechnol; 2012 Sep; 168(2):234-46. PubMed ID: 22736274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilizing bromelain for therapeutic applications by adsorption immobilization on spores of probiotic Bacillus.
    Nwagu TN; Ugwuodo CJ
    Int J Biol Macromol; 2019 Apr; 127():406-414. PubMed ID: 30654039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening.
    Neuteboom LW; Matsumoto KO; Christopher DA
    Plant Physiol; 2009 Oct; 151(2):515-27. PubMed ID: 19648229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.