These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33713452)

  • 1. Grow fast but don't die young: Maternal effects mediate life-history trade-offs of lizards under climate warming.
    Hao X; Zou TT; Han XZ; Zhang FS; Du WG
    J Anim Ecol; 2021 Jun; 90(6):1550-1559. PubMed ID: 33713452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate warming has divergent physiological impacts on sympatric lizards.
    Ding Z; Wang X; Zou T; Hao X; Zhang Q; Sun B; Du W
    Sci Total Environ; 2024 Feb; 912():168992. PubMed ID: 38052387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low precipitation aggravates the impact of extreme high temperatures on lizard reproduction.
    Wang Y; Zeng ZG; Li SR; Bi JH; Du WG
    Oecologia; 2016 Dec; 182(4):961-971. PubMed ID: 27638182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combined effects of atrazine and warming on environmental adaptability in lizards (Eremias argus) from the perspective of a life-history traits trade-off: Gender differences in trade-off strategies may reverse mortality risk.
    Nie Y; Wang Z; Yu S; Zhang L; Liu R; Liu Y; Zhu W; Zhou Z; Diao J
    Sci Total Environ; 2023 Jun; 879():163078. PubMed ID: 36972889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population origin, maternal effects, and hydric conditions during incubation determine embryonic and offspring survival in a desert-dwelling lizard.
    Wang Y; Li SR; Pei MY; Wu DY; Du WG
    Oecologia; 2021 Jun; 196(2):341-352. PubMed ID: 33966105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental warming induces oxidative stress and immunosuppression in a viviparous lizard, Eremias multiocellata.
    Han X; Hao X; Wang Y; Wang X; Teng L; Liu Z; Zhang F; Zhang Q
    J Therm Biol; 2020 May; 90():102595. PubMed ID: 32479390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telomere length, oxidative stress and their links with growth and survival in a lizard facing climate warming.
    Zhang Q; Han XZ; Burraco P; Hao X; Teng LW; Liu ZS; Zhang FS; Du WG
    Sci Total Environ; 2023 Sep; 891():164424. PubMed ID: 37236462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.
    Bestion E; Teyssier A; Richard M; Clobert J; Cote J
    PLoS Biol; 2015 Oct; 13(10):e1002281. PubMed ID: 26501958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticipatory parental effects in a subtropical lizard in response to experimental warming.
    Sun BJ; Wang Y; Wang Y; Lu HL; Du WG
    Front Zool; 2018; 15():51. PubMed ID: 30534186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal warming influences reproductive frequency, but not hatchling phenotypes in a multiple-clutched oviparous lizard.
    Lu HL; Wang J; Xu DD; Dang W
    J Therm Biol; 2018 May; 74():303-310. PubMed ID: 29801642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential reproductive investment in co-occurring oviparous and viviparous common lizards (Zootoca vivipara) and implications for life-history trade-offs with viviparity.
    Recknagel H; Elmer KR
    Oecologia; 2019 May; 190(1):85-98. PubMed ID: 31062164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are viviparous lizards more vulnerable to climate warming because they have evolved reduced body temperature and heat tolerance?
    Wang Z; Ma L; Shao M; Ji X
    Oecologia; 2017 Dec; 185(4):573-582. PubMed ID: 29018950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic plasticity may help lizards cope with increasingly variable temperatures.
    Ma L; Sun BJ; Cao P; Li XH; Du WG
    Oecologia; 2018 May; 187(1):37-45. PubMed ID: 29594611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of early thermal environment on the morphology and performance of a lizard species with bimodal reproduction.
    Beltrán I; Durand V; Loiseleur R; Whiting MJ
    J Comp Physiol B; 2020 Nov; 190(6):795-809. PubMed ID: 32951106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut microbiota modulation enhances the immune capacity of lizards under climate warming.
    Yang J; Liu W; Han X; Hao X; Yao Q; Du W
    Microbiome; 2024 Feb; 12(1):37. PubMed ID: 38388458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food restriction affects maternal investment but not neonate phenotypes in a viviparous lizard.
    Wang Y; Zeng ZG; Ma L; Li SR; Du WG
    Zool Res; 2017 Mar; 38(2):81-87. PubMed ID: 28409503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectivity among thermal habitats buffers the effects of warm climate on life-history traits and population dynamics.
    Pellerin F; Bestion E; Winandy L; Di Gesu L; Richard M; Aguilée R; Cote J
    J Anim Ecol; 2022 Nov; 91(11):2301-2313. PubMed ID: 36131637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic rates of development and the effect of thermal extremes on offspring fitness in a cold-climate viviparous lizard.
    Cunningham GD; Fitzpatrick LJ; While GM; Wapstra E
    J Exp Zool A Ecol Integr Physiol; 2018 Apr; 329(4-5):262-270. PubMed ID: 29791071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and constraints on offspring size-number trade-offs in sand lizards (Lacerta agilis).
    Ljungström G; Stjernstedt M; Wapstra E; Olsson M
    J Evol Biol; 2016 May; 29(5):979-90. PubMed ID: 26851437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-scale approach to understanding climate effects on offspring size at birth and date of birth in a reptile.
    Cadby CD; While GM; Hobday AJ; Uller T; Wapstra E
    Integr Zool; 2010 Jun; 5(2):164-175. PubMed ID: 21392334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.