BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 3371365)

  • 1. 13C-NMR study of glycerol metabolism in rabbit renal cells of proximal convoluted tubules.
    Jans AW; Willem R
    Eur J Biochem; 1988 May; 174(1):67-73. PubMed ID: 3371365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 13C NMR study on fluxes into the Krebs cycle of rabbit renal proximal tubular cells.
    Jans AW; Leibfritz D
    NMR Biomed; 1989 Apr; 1(4):171-6. PubMed ID: 2641283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 13C NMR study of the application of [U-13C]succinate for metabolic investigations in rabbit renal proximal convoluted tubular cells.
    Jans AW; Willem R
    Magn Reson Med; 1990 Apr; 14(1):148-53. PubMed ID: 2352470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C-n.m.r. study of citrate metabolism in rabbit renal proximal-tubule cells.
    Jans AW; Winkel C; Buitenhuis L; Lugtenburg J
    Biochem J; 1989 Jan; 257(2):425-9. PubMed ID: 2564775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites.
    Lapidot A; Gopher A
    J Biol Chem; 1994 Nov; 269(44):27198-208. PubMed ID: 7961629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon 13 NMR spectroscopy: a powerful tool for studying renal metabolism.
    Baverel G; Conjard A; Chauvin MF; Vercoutere B; Vittorelli A; Dubourg L; Gauthier C; Michoudet C; Durozard D; Martin G
    Biochimie; 2003 Sep; 85(9):863-71. PubMed ID: 14652175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 13C-n.m.r. investigation of the metabolism of amino acids in renal proximal convoluted tubules of normal and streptozotocin-treated rats and rabbits.
    Jans AW; Willem R
    Biochem J; 1989 Oct; 263(1):231-41. PubMed ID: 2604695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of [2-13C]succinate in renal cells determined by 13C NMR.
    Jans AW; Willem R
    Eur J Biochem; 1991 Jan; 195(1):97-101. PubMed ID: 1991481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1-13C]glucose incubation.
    Portais JC; Schuster R; Merle M; Canioni P
    Eur J Biochem; 1993 Oct; 217(1):457-68. PubMed ID: 7901007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 13C nuclear magnetic resonance evidence for gamma-aminobutyric acid formation via pyruvate carboxylase in rat brain: a metabolic basis for compartmentation.
    Brainard JR; Kyner E; Rosenberg GA
    J Neurochem; 1989 Oct; 53(4):1285-92. PubMed ID: 2769268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rabbit kidney tubule utilizes glucose for glutamine synthesis. A 13C NMR study.
    Chauvin MF; Mégnin-Chanet F; Martin G; Lhoste JM; Baverel G
    J Biol Chem; 1994 Oct; 269(42):26025-33. PubMed ID: 7929313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [1-13C]glucose metabolism in rat cerebellar granule cells and astrocytes in primary culture. Evaluation of flux parameters by 13C- and 1H-NMR spectroscopy.
    Martin M; Portais JC; Labouesse J; Canioni P; Merle M
    Eur J Biochem; 1993 Oct; 217(2):617-25. PubMed ID: 7901011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways for the synthesis of sorbitol from 13C-labeled hexoses, pentose, and glycerol in renal papillary tissue.
    Jans AW; Grunewald RW; Kinne RK
    Magn Reson Med; 1989 Mar; 9(3):419-22. PubMed ID: 2496284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium chloride inhibits lactate gluconeogenesis in isolated human renal proximal tubules: a cellular metabolomic approach with 13C-NMR.
    Faiz H; Conjard-Duplany A; Boghossian M; Martin G; Baverel G; Ferrier B
    Arch Toxicol; 2011 Sep; 85(9):1067-77. PubMed ID: 21153630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.
    Zwingmann C; Leibfritz D; Hazell AS
    J Cereb Blood Flow Metab; 2003 Jun; 23(6):756-71. PubMed ID: 12796724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy fuel utilization by fetal versus young rabbit brain: a 13C MRS isotopomer analysis of [U-(13)C]glucose metabolites.
    Haber S; Lapidot A
    Brain Res; 2001 Mar; 896(1-2):102-17. PubMed ID: 11277979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: a 13C-NMR study.
    Renault S; Faiz H; Gadet R; Ferrier B; Martin G; Baverel G; Conjard-Duplany A
    Toxicol Appl Pharmacol; 2010 Jan; 242(1):9-17. PubMed ID: 19747499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C NMR spectroscopy as a tool to investigate renal metabolism.
    Jans AW; Kinne RK
    Kidney Int; 1991 Mar; 39(3):430-7. PubMed ID: 1676430
    [No Abstract]   [Full Text] [Related]  

  • 19. Limitations of the mass isotopomer distribution analysis of glucose to study gluconeogenesis. Heterogeneity of glucose labeling in incubated hepatocytes.
    Previs SF; Hallowell PT; Neimanis KD; David F; Brunengraber H
    J Biol Chem; 1998 Jul; 273(27):16853-9. PubMed ID: 9642245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C-NMR studies of Corynebacterium melassecola metabolic pathways.
    Rollin C; Morgant V; Guyonvarch A; Guerquin-Kern JL
    Eur J Biochem; 1995 Jan; 227(1-2):488-93. PubMed ID: 7851427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.