These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 33713772)
1. Structural leitmotif and functional variations of the structural catalytic core in (chymo)trypsin-like serine/cysteine fold proteinases. Denesyuk AI; Permyakov SE; Johnson MS; Permyakov EA; Uversky VN; Denessiouk K Int J Biol Macromol; 2021 May; 179():601-609. PubMed ID: 33713772 [TBL] [Abstract][Full Text] [Related]
2. Papain-like cysteine proteinase zone (PCP-zone) and PCP structural catalytic core (PCP-SCC) of enzymes with cysteine proteinase fold. Denessiouk K; Uversky VN; Permyakov SE; Permyakov EA; Johnson MS; Denesyuk AI Int J Biol Macromol; 2020 Dec; 165(Pt A):1438-1446. PubMed ID: 33058970 [TBL] [Abstract][Full Text] [Related]
3. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Denesyuk AI; Johnson MS; Salo-Ahen OMH; Uversky VN; Denessiouk K Int J Biol Macromol; 2020 Jun; 153():399-411. PubMed ID: 32151723 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional significance of the amino acid differences Val Denesyuk AI; Permyakov EA; Johnson MS; Permyakov SE; Denessiouk K; Uversky VN Int J Biol Macromol; 2021 Dec; 193(Pt B):2113-2120. PubMed ID: 34774600 [TBL] [Abstract][Full Text] [Related]
5. The β-link motif in protein architecture. Leader DP; Milner-White EJ Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1040-1049. PubMed ID: 34342277 [TBL] [Abstract][Full Text] [Related]
6. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases. Migliolo L; de Oliveira AS; Santos EA; Franco OL; de Sales MP J Mol Graph Model; 2010 Sep; 29(2):148-56. PubMed ID: 20816329 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of the putative active site residues of 3C proteinase of coxsackievirus B3: evidence of a functional relationship with trypsin-like serine proteinases. Miyashita K; Kusumi M; Utsumi R; Katayama S; Noda M; Komano T; Satoh N Protein Eng; 1993 Feb; 6(2):189-93. PubMed ID: 8386363 [TBL] [Abstract][Full Text] [Related]
9. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Bazan JF; Fletterick RJ Proc Natl Acad Sci U S A; 1988 Nov; 85(21):7872-6. PubMed ID: 3186696 [TBL] [Abstract][Full Text] [Related]
10. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases. Beveridge AJ Protein Sci; 1996 Jul; 5(7):1355-65. PubMed ID: 8819168 [TBL] [Abstract][Full Text] [Related]
11. Modeling and structural analysis of PA clan serine proteases. Laskar A; Rodger EJ; Chatterjee A; Mandal C BMC Res Notes; 2012 May; 5():256. PubMed ID: 22624962 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae). Zhu YC; Zeng F; Oppert B Insect Biochem Mol Biol; 2003 Sep; 33(9):889-99. PubMed ID: 12915180 [TBL] [Abstract][Full Text] [Related]
13. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. Gorbalenya AE; Donchenko AP; Blinov VM; Koonin EV FEBS Lett; 1989 Jan; 243(2):103-14. PubMed ID: 2645167 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities. Pletnev VZ; Zamolodchikova TS; Pangborn WA; Duax WL Proteins; 2000 Oct; 41(1):8-16. PubMed ID: 10944388 [TBL] [Abstract][Full Text] [Related]
15. Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB. Gadwal S; Korotkov KV; Delarosa JR; Hol WG; Sandkvist M J Biol Chem; 2014 Mar; 289(12):8288-98. PubMed ID: 24459146 [TBL] [Abstract][Full Text] [Related]
16. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Chen P; Tsuge H; Almassy RJ; Gribskov CL; Katoh S; Vanderpool DL; Margosiak SA; Pinko C; Matthews DA; Kan CC Cell; 1996 Sep; 86(5):835-43. PubMed ID: 8797829 [TBL] [Abstract][Full Text] [Related]
17. Structural Basis of Covalent Inhibitory Mechanism of TMPRSS2-Related Serine Proteases by Camostat. Sun G; Sui Y; Zhou Y; Ya J; Yuan C; Jiang L; Huang M J Virol; 2021 Sep; 95(19):e0086121. PubMed ID: 34160253 [TBL] [Abstract][Full Text] [Related]
18. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes. Olson ST; Bock PE; Kvassman J; Shore JD; Lawrence DA; Ginsburg D; Björk I J Biol Chem; 1995 Dec; 270(50):30007-17. PubMed ID: 8530403 [TBL] [Abstract][Full Text] [Related]
19. In silico Study to Evaluate the Antiviral Activity of Novel Structures against 3C-like Protease of Novel Coronavirus (COVID-19) and SARS-CoV. Chunduru K; Sankhe R; Begum F; Sodum N; Kumar N; Kishore A; Shenoy RR; Rao CM; Saravu K Med Chem; 2021; 17(4):380-395. PubMed ID: 32720605 [TBL] [Abstract][Full Text] [Related]
20. Differentiating serine and cysteine protease mechanisms by new covalent QSAR descriptors. Shokhen M; Traube T; Vijayakumar S; Hirsch M; Uritsky N; Albeck A Chembiochem; 2011 May; 12(7):1023-6. PubMed ID: 21438106 [No Abstract] [Full Text] [Related] [Next] [New Search]