These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33713842)

  • 1. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space.
    Paviolo C; Cognet L
    Neurobiol Dis; 2021 Jun; 153():105328. PubMed ID: 33713842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis.
    Paviolo C; Soria FN; Ferreira JS; Lee A; Groc L; Bezard E; Cognet L
    Methods; 2020 Mar; 174():91-99. PubMed ID: 30862507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain.
    Godin AG; Varela JA; Gao Z; Danné N; Dupuis JP; Lounis B; Groc L; Cognet L
    Nat Nanotechnol; 2017 Mar; 12(3):238-243. PubMed ID: 27870840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Carbon Nanotube Tracking Reveals the Nanoscale Extracellular Space around Synapses.
    Paviolo C; Ferreira JS; Lee A; Hunter D; Calaresu I; Nandi S; Groc L; Cognet L
    Nano Lett; 2022 Sep; 22(17):6849-6856. PubMed ID: 36038137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling.
    Soria FN; Paviolo C; Doudnikoff E; Arotcarena ML; Lee A; Danné N; Mandal AK; Gosset P; Dehay B; Groc L; Cognet L; Bezard E
    Nat Commun; 2020 Jul; 11(1):3440. PubMed ID: 32651387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When Super-Resolution Localization Microscopy Meets Carbon Nanotubes.
    Nandi S; Caicedo K; Cognet L
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent sp
    Mandal AK; Wu X; Ferreira JS; Kim M; Powell LR; Kwon H; Groc L; Wang Y; Cognet L
    Sci Rep; 2020 Mar; 10(1):5286. PubMed ID: 32210295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosensing with Fluorescent Carbon Nanotubes.
    Ackermann J; Metternich JT; Herbertz S; Kruss S
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202112372. PubMed ID: 34978752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Mapping of the Nanoscale Organization and Redox State of Extracellular Space in Living Brain Tissue.
    Chen HJ; Zhao L; Wang L; Wang ZG; Pang DW; Liu SL
    ACS Nano; 2024 Aug; 18(33):22245-22256. PubMed ID: 39116272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution fluorescence imaging of extracellular environments.
    Yoshida S; Kisley L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119767. PubMed ID: 33862370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local diffusion in the extracellular space of the brain.
    Tønnesen J; Hrabĕtová S; Soria FN
    Neurobiol Dis; 2023 Feb; 177():105981. PubMed ID: 36581229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic Assemblies of Single-Walled Carbon Nanotubes and Sequence-Tunable Peptoid Polymers Detect a Lectin Protein and Its Target Sugars.
    Chio L; Del Bonis-O'Donnell JT; Kline MA; Kim JH; McFarlane IR; Zuckermann RN; Landry MP
    Nano Lett; 2019 Nov; 19(11):7563-7572. PubMed ID: 30958010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging.
    Wen J; Xu Y; Li H; Lu A; Sun S
    Chem Commun (Camb); 2015 Jul; 51(57):11346-58. PubMed ID: 25990681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array.
    Kruss S; Salem DP; Vuković L; Lima B; Vander Ende E; Boyden ES; Strano MS
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1789-1794. PubMed ID: 28179565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule electrical biosensors based on single-walled carbon nanotubes.
    Guo X
    Adv Mater; 2013 Jul; 25(25):3397-408. PubMed ID: 23696446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the Extracellular Space of the Brain: From Super-resolved Microstructure to
    Hrabetova S; Cognet L; Rusakov DA; Nägerl UV
    J Neurosci; 2018 Oct; 38(44):9355-9363. PubMed ID: 30381427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unlocking the power of optical imaging in the second biological window: Structuring near-infrared II materials from organic molecules to nanoparticles.
    Dahal D; Ray P; Pan D
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Nov; 13(6):e1734. PubMed ID: 34159753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale and functional heterogeneity of the hippocampal extracellular space.
    Grassi D; Idziak A; Lee A; Calaresu I; Sibarita JB; Cognet L; Nägerl UV; Groc L
    Cell Rep; 2023 May; 42(5):112478. PubMed ID: 37149864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes.
    Iverson NM; Barone PW; Shandell M; Trudel LJ; Sen S; Sen F; Ivanov V; Atolia E; Farias E; McNicholas TP; Reuel N; Parry NM; Wogan GN; Strano MS
    Nat Nanotechnol; 2013 Nov; 8(11):873-80. PubMed ID: 24185942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.