BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33713901)

  • 1. Substrate degradation, biodiesel production, and microbial community of two electro-fermentation systems on treating oleaginous microalgae Nannochloropsis sp.
    Shi Y; Huang K; Pan X; Liu G; Cai Y; Zaidi AA; Zhang K
    Bioresour Technol; 2021 Jun; 329():124932. PubMed ID: 33713901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp.
    Brennan B; Regan F
    Sci Total Environ; 2020 Dec; 748():142464. PubMed ID: 33113682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.
    Rago L; Baeza JA; Guisasola A
    Bioelectrochemistry; 2016 Jun; 109():57-62. PubMed ID: 26855359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp.
    Wang H; Ji C; Bi S; Zhou P; Chen L; Liu T
    Bioresour Technol; 2014 Nov; 172():169-173. PubMed ID: 25260180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, mass cultivation, and biodiesel production potential of marine microalgae identified from Bay of Bengal.
    Arunachalam Sivagurulingam AP; Sivanandi P; Pandian S
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6646-6655. PubMed ID: 34453254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.
    Chookaew T; Prasertsan P; Ren ZJ
    N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.
    Pavón-Suriano SG; Ortega-Clemente LA; Curiel-Ramírez S; Jiménez-García MI; Pérez-Legaspi IA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21332-21340. PubMed ID: 28741207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae
    Tardiolo G; Nicolò MS; Drago C; Genovese C; Fava G; Gugliandolo C; D'Antona N
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging trends in microbial fuel cell diversification-Critical analysis.
    Shanthi Sravan J; Tharak A; Annie Modestra J; Seop Chang I; Venkata Mohan S
    Bioresour Technol; 2021 Apr; 326():124676. PubMed ID: 33556705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis.
    Taleb A; Pruvost J; Legrand J; Marec H; Le-Gouic B; Mirabella B; Legeret B; Bouvet S; Peltier G; Li-Beisson Y; Taha S; Takache H
    Bioresour Technol; 2015 Feb; 177():224-32. PubMed ID: 25496942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of azo dye decolourization in a MFC-MEC coupled system.
    Li Y; Yang HY; Shen JY; Mu Y; Yu HQ
    Bioresour Technol; 2016 Feb; 202():93-100. PubMed ID: 26702516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure.
    Long S; Zhao L; Chen J; Kim J; Huang CH; Pavlostathis SG
    Bioresour Technol; 2021 Feb; 322():124534. PubMed ID: 33360083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.
    Ma Y; Wang Z; Yu C; Yin Y; Zhou G
    Bioresour Technol; 2014 Sep; 167():503-9. PubMed ID: 25013933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae as a raw material for biofuels production.
    Gouveia L; Oliveira AC
    J Ind Microbiol Biotechnol; 2009 Feb; 36(2):269-74. PubMed ID: 18982369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous copper removal and electricity production and microbial community in microbial fuel cells with different cathode catalysts.
    Wu Y; Wang L; Jin M; Zhang K
    Bioresour Technol; 2020 Jun; 305():123166. PubMed ID: 32184010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.
    Sugnaux M; Happe M; Cachelin CP; Gloriod O; Huguenin G; Blatter M; Fischer F
    Bioresour Technol; 2016 Dec; 221():61-69. PubMed ID: 27639225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of microbial electrolysis cells with bioanodes grown at different external resistances.
    Rago L; Monpart N; Cortés P; Baeza JA; Guisasola A
    Water Sci Technol; 2016; 73(5):1129-35. PubMed ID: 26942536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An MEC-MFC-coupled system for biohydrogen production from acetate.
    Sun M; Sheng GP; Zhang L; Xia CR; Mu ZX; Liu XW; Wang HL; Yu HQ; Qi R; Yu T; Yang M
    Environ Sci Technol; 2008 Nov; 42(21):8095-100. PubMed ID: 19031908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.