BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33713911)

  • 21. Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9.
    Roth J; Zuber C
    Histochem Cell Biol; 2017 Feb; 147(2):269-284. PubMed ID: 27803995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation.
    Parodi AJ
    Biochem J; 2000 May; 348 Pt 1(Pt 1):1-13. PubMed ID: 10794707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation.
    Tannous A; Patel N; Tamura T; Hebert DN
    Mol Biol Cell; 2015 Feb; 26(3):390-405. PubMed ID: 25428988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo.
    Stigliano ID; Alculumbre SG; Labriola CA; Parodi AJ; D'Alessio C
    Mol Biol Cell; 2011 Jun; 22(11):1810-23. PubMed ID: 21471007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monoglucosylated glycans in the secreted human complement component C3: implications for protein biosynthesis and structure.
    Crispin MD; Ritchie GE; Critchley AJ; Morgan BP; Wilson IA; Dwek RA; Sim RB; Rudd PM
    FEBS Lett; 2004 May; 566(1-3):270-4. PubMed ID: 15147907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular functions of N-linked glycans.
    Helenius A; Aebi M
    Science; 2001 Mar; 291(5512):2364-9. PubMed ID: 11269317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical-Synthesis-Based Approach to Glycoprotein Functions in the Endoplasmic Reticulum.
    Ito Y; Kajihara Y; Takeda Y
    Chemistry; 2020 Dec; 26(67):15461-15470. PubMed ID: 33107166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro assays of the functions of calnexin and calreticulin, lectin chaperones of the endoplasmic reticulum.
    Ireland BS; Niggemann M; Williams DB
    Methods Mol Biol; 2006; 347():331-42. PubMed ID: 17072021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis of cyclophilin B binding by the calnexin/calreticulin P-domain.
    Kozlov G; Bastos-Aristizabal S; Määttänen P; Rosenauer A; Zheng F; Killikelly A; Trempe JF; Thomas DY; Gehring K
    J Biol Chem; 2010 Nov; 285(46):35551-7. PubMed ID: 20801878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutant p53-ENTPD5 control of the calnexin/calreticulin cycle: a druggable target for inhibiting integrin-α5-driven metastasis.
    Pavlakis E; Neumann M; Merle N; Wieboldt R; Wanzel M; Ponath V; Pogge von Strandmann E; Elmshäuser S; Stiewe T
    J Exp Clin Cancer Res; 2023 Aug; 42(1):203. PubMed ID: 37563605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum.
    Molinari M; Helenius A
    Science; 2000 Apr; 288(5464):331-3. PubMed ID: 10764645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation.
    Banerjee S; Vishwanath P; Cui J; Kelleher DJ; Gilmore R; Robbins PW; Samuelson J
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11676-81. PubMed ID: 17606910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lectins as chaperones in glycoprotein folding.
    Trombetta ES; Helenius A
    Curr Opin Struct Biol; 1998 Oct; 8(5):587-92. PubMed ID: 9818262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The interplay between calcium and the in vitro lectin and chaperone activities of calreticulin.
    Conte IL; Keith N; Gutiérrez-Gonzalez C; Parodi AJ; Caramelo JJ
    Biochemistry; 2007 Apr; 46(15):4671-80. PubMed ID: 17385894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate specificity of the oxidoreductase ERp57 is determined primarily by its interaction with calnexin and calreticulin.
    Jessop CE; Tavender TJ; Watkins RH; Chambers JE; Bulleid NJ
    J Biol Chem; 2009 Jan; 284(4):2194-202. PubMed ID: 19054761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle.
    Lamriben L; Graham JB; Adams BM; Hebert DN
    Traffic; 2016 Apr; 17(4):308-26. PubMed ID: 26676362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calreticulin and calnexin interact with different protein and glycan determinants during the assembly of MHC class I.
    Harris MR; Yu YY; Kindle CS; Hansen TH; Solheim JC
    J Immunol; 1998 Jun; 160(11):5404-9. PubMed ID: 9605141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A sweet code for glycoprotein folding.
    Caramelo JJ; Parodi AJ
    FEBS Lett; 2015 Nov; 589(22):3379-87. PubMed ID: 26226420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association of the thyrotropin receptor with calnexin, calreticulin and BiP. Efects on the maturation of the receptor.
    Siffroi-Fernandez S; Giraud A; Lanet J; Franc JL
    Eur J Biochem; 2002 Oct; 269(20):4930-7. PubMed ID: 12383251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin.
    Rodan AR; Simons JF; Trombetta ES; Helenius A
    EMBO J; 1996 Dec; 15(24):6921-30. PubMed ID: 9003768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.