These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33713913)

  • 41. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated and accurate detection of soma location and surface morphology in large-scale 3D neuron images.
    Yan C; Li A; Zhang B; Ding W; Luo Q; Gong H
    PLoS One; 2013; 8(4):e62579. PubMed ID: 23638117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images.
    Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK
    Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anisotropic ssTEM image segmentation using dense correspondence across sections.
    Laptev D; Vezhnevets A; Dwivedi S; Buhmann JM
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):323-30. PubMed ID: 23285567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.
    Wernitznig S; Sele M; Urschler M; Zankel A; Pölt P; Rind FC; Leitinger G
    J Neurosci Methods; 2016 May; 264():16-24. PubMed ID: 26928258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automated liver segmentation from a postmortem CT scan based on a statistical shape model.
    Saito A; Yamamoto S; Nawano S; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):205-221. PubMed ID: 27659283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm.
    Xia KJ; Yin HS; Zhang YD
    J Med Syst; 2018 Nov; 43(1):2. PubMed ID: 30456668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images.
    Wu S; Weinstein SP; Conant EF; Schnall MD; Kontos D
    Med Phys; 2013 Apr; 40(4):042301. PubMed ID: 23556914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Learning and Segmenting Dense Voxel Embeddings for 3D Neuron Reconstruction.
    Lee K; Lu R; Luther K; Seung HS
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3801-3811. PubMed ID: 34270419
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region.
    Arabi H; Dowling JA; Burgos N; Han X; Greer PB; Koutsouvelis N; Zaidi H
    Med Phys; 2018 Nov; 45(11):5218-5233. PubMed ID: 30216462
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M; Yan Q; Qin M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503
    [TBL] [Abstract][Full Text] [Related]  

  • 53. HIVE-Net: Centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in EM images.
    Yuan Z; Ma X; Yi J; Luo Z; Peng J
    Comput Methods Programs Biomed; 2021 Mar; 200():105925. PubMed ID: 33508773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Segmentation of myocardium from cardiac MR images using a novel dynamic programming based segmentation method.
    Qian X; Lin Y; Zhao Y; Wang J; Liu J; Zhuang X
    Med Phys; 2015 Mar; 42(3):1424-35. PubMed ID: 25735296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling.
    Şener E; Mumcuoglu EU; Hamcan S
    Comput Methods Programs Biomed; 2016 Feb; 124():31-44. PubMed ID: 26574298
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shape Completion Using Deep Boltzmann Machine.
    Wang Z; Wu Q
    Comput Intell Neurosci; 2017; 2017():5705693. PubMed ID: 28804496
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.
    Mari JF; Saito JH; Neves AF; Lotufo CM; Destro-Filho JB; Nicoletti Mdo C
    Int J Neural Syst; 2015 Dec; 25(8):1550033. PubMed ID: 26510475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep Learning Segmentation of Optical Microscopy Images Improves 3-D Neuron Reconstruction.
    Li R; Zeng T; Peng H; Ji S
    IEEE Trans Med Imaging; 2017 Jul; 36(7):1533-1541. PubMed ID: 28287966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hierarchical level features based trainable segmentation for electron microscopy images.
    Wang S; Cao G; Wei B; Yin Y; Yang G; Li C
    Biomed Eng Online; 2013 Jun; 12():59. PubMed ID: 23805885
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using Simulated Training Data of Voxel-Level Generative Models to Improve 3D Neuron Reconstruction.
    Liu C; Wang D; Zhang H; Wu W; Sun W; Zhao T; Zheng N
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3624-3635. PubMed ID: 35834465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.