These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33714011)

  • 1. Hematite facet-mediated microbial dissimilatory iron reduction and production of reactive oxygen species during aerobic oxidation.
    Han R; Lv J; Zhang S; Zhang S
    Water Res; 2021 May; 195():116988. PubMed ID: 33714011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides.
    Han R; Lv J; Huang Z; Zhang S; Zhang S
    Environ Sci Technol; 2020 Jan; 54(2):902-910. PubMed ID: 31886656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shewanella oneidensis MR-1 dissimilatory reduction of ferrihydrite to highly enhance mineral transformation and reactive oxygen species production in redox-fluctuating environments.
    Yang L; Wu H; Zhao Y; Tan X; Wei Y; Guan Y; Huang G
    Chemosphere; 2024 Mar; 352():141364. PubMed ID: 38336034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of 2, 2', 4, 4'-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1.
    Peng Z; Shi M; Xia K; Dong Y; Shi L
    Environ Pollut; 2020 Nov; 266(Pt 1):115413. PubMed ID: 32828026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of metal atoms incorporated in hematite determines oxygen activation by surface-bound Fe(II) for As(III) oxidation.
    Fang L; Gao B; Li F; Liu K; Chi J
    Water Res; 2022 Dec; 227():119351. PubMed ID: 36399840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of humic acid on bioreduction of facet-dependent hematite by Shewanella putrefaciens CN-32.
    Lu Y; Hu S; Zhang H; Song Q; Zhou W; Shen X; Xia D; Yang Y; Zhu H; Liu C
    Sci Total Environ; 2022 Nov; 849():157713. PubMed ID: 35914600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Effects of Humic Components on Microbially Mediated Iron Redox Processes and Production of Hydroxyl Radicals.
    Han R; Wang Z; Lv J; Zhu Z; Yu GH; Li G; Zhu YG
    Environ Sci Technol; 2022 Nov; 56(22):16419-16427. PubMed ID: 36223591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions.
    Benaiges-Fernandez R; Palau J; Offeddu FG; Cama J; Urmeneta J; Soler JM; Dold B
    Mar Environ Res; 2019 Oct; 151():104782. PubMed ID: 31514974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochar-Facilitated Microbial Reduction of Hematite.
    Xu S; Adhikari D; Huang R; Zhang H; Tang Y; Roden E; Yang Y
    Environ Sci Technol; 2016 Mar; 50(5):2389-95. PubMed ID: 26836650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facet-dependent Fe(II) redox chemistry on iron oxide for organic pollutant transformation and mechanisms.
    Hao T; Huang Y; Li F; Wu Y; Fang L
    Water Res; 2022 Jul; 219():118587. PubMed ID: 35605391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fulvic Acid-Mediated Interfacial Reactions on Exposed Hematite Facets during Dissimilatory Iron Reduction.
    Hu S; Wu Y; Li F; Shi Z; Ma C; Liu T
    Langmuir; 2021 May; 37(20):6139-6150. PubMed ID: 33974438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Shewanella oneidensis on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides.
    Xiao W; Jones AM; Li X; Collins RN; Waite TD
    Environ Sci Technol; 2018 Jan; 52(1):114-123. PubMed ID: 29205031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1.
    Zhu F; Huang Y; Ni H; Tang J; Zhu Q; Long ZE; Zou L
    Chemosphere; 2022 Feb; 288(Pt 3):132661. PubMed ID: 34699878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Insights into Sb(III) Oxidation and Immobilization during Ferrous Iron Oxygenation: The Overlooked Roles of Singlet Oxygen and Fe (oxyhydr)oxides Formation.
    Wang Y; He M; Lin C; Ouyang W; Liu X
    Environ Sci Technol; 2024 Jul; 58(26):11470-11481. PubMed ID: 38864425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate.
    Sheng H; Liu W; Wang Y; Ye L; Jing C
    Environ Pollut; 2024 Jun; 351():124008. PubMed ID: 38641038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facet-Dependent Productions of Reactive Oxygen Species from Pyrite Oxidation.
    Tan M; Zheng X; Yu W; Chen B; Chu C
    Environ Sci Technol; 2024 Jan; 58(1):432-439. PubMed ID: 38111081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.
    Lu Y; Xu L; Shu W; Zhou J; Chen X; Xu Y; Qian G
    Bioresour Technol; 2017 Jan; 224():34-40. PubMed ID: 27806884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the Formation Mechanism of Reactive Oxygen Species in the Interface Reaction of SO
    Jia Y; Ma Q; Liu Y; Zhang C; Chen T; Zhang P; Chu B; He H
    Environ Sci Technol; 2024 Jun; 58(23):10175-10184. PubMed ID: 38771930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.