These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 33714053)
1. Development and validation of a model for the early prediction of the RRT requirement in patients with rhabdomyolysis. Liu C; Yuan Q; Mao Z; Hu P; Wu R; Liu X; Hong Q; Chi K; Geng X; Sun X Am J Emerg Med; 2021 Aug; 46():38-44. PubMed ID: 33714053 [TBL] [Abstract][Full Text] [Related]
2. Development and validation a nomogram prediction model for early diagnosis of bloodstream infections in the intensive care unit. Qi Z; Dong L; Lin J; Duan M Front Cell Infect Microbiol; 2024; 14():1348896. PubMed ID: 38500500 [TBL] [Abstract][Full Text] [Related]
3. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
4. Interpretable Machine Learning Model for Early Prediction of Mortality in ICU Patients with Rhabdomyolysis. Liu C; Liu X; Mao Z; Hu P; Li X; Hu J; Hong Q; Geng X; Chi K; Zhou F; Cai G; Chen X; Sun X Med Sci Sports Exerc; 2021 Sep; 53(9):1826-1834. PubMed ID: 33787533 [TBL] [Abstract][Full Text] [Related]
5. Development and Validation of a Dynamic Nomogram for Predicting in-Hospital Mortality in Patients with Acute Pancreatitis: A Retrospective Cohort Study in the Intensive Care Unit. Zou K; Huang S; Ren W; Xu H; Zhang W; Shi X; Shi L; Zhong X; Peng Y; Lü M; Tang X Int J Gen Med; 2023; 16():2541-2553. PubMed ID: 37351008 [TBL] [Abstract][Full Text] [Related]
6. Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study. Huang B; Liang D; Zou R; Yu X; Dan G; Huang H; Liu H; Liu Y Ann Transl Med; 2021 May; 9(9):794. PubMed ID: 34268407 [TBL] [Abstract][Full Text] [Related]
7. The CMLA score: A novel tool for early prediction of renal replacement therapy in patients with cardiogenic shock. Pang S; Wang S; Fan C; Li F; Zhao W; Shi B; Wang Y; Wu X Curr Probl Cardiol; 2024 Dec; 49(12):102870. PubMed ID: 39343053 [TBL] [Abstract][Full Text] [Related]
8. Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study. Kim YK; Seo WD; Lee SJ; Koo JH; Kim GC; Song HS; Lee M J Med Internet Res; 2024 Sep; 26():e62890. PubMed ID: 39288404 [TBL] [Abstract][Full Text] [Related]
9. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a novel blending machine learning model for hospital mortality prediction in ICU patients with Sepsis. Zeng Z; Yao S; Zheng J; Gong X BioData Min; 2021 Aug; 14(1):40. PubMed ID: 34399809 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of a nomogram for predicting in-hospital mortality of intensive care unit patients with liver cirrhosis. Tang XW; Ren WS; Huang S; Zou K; Xu H; Shi XM; Zhang W; Shi L; Lü MH World J Hepatol; 2024 Apr; 16(4):625-639. PubMed ID: 38689750 [TBL] [Abstract][Full Text] [Related]
12. A nomogram for predicting hospital mortality of critical ill patients with sepsis and cancer: a retrospective cohort study based on MIMIC-IV and eICU-CRD. Yuan ZN; Xue YJ; Wang HJ; Qu SN; Huang CL; Wang H; Zhang H; Xing XZ BMJ Open; 2023 Sep; 13(9):e072112. PubMed ID: 37696627 [TBL] [Abstract][Full Text] [Related]
13. A machine learning-based prediction model for in-hospital mortality among critically ill patients with hip fracture: An internal and external validated study. Lei M; Han Z; Wang S; Han T; Fang S; Lin F; Huang T Injury; 2023 Feb; 54(2):636-644. PubMed ID: 36414503 [TBL] [Abstract][Full Text] [Related]
14. Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU. Xie W; Li Y; Meng X; Zhao M Int J Med Inform; 2023 Jun; 174():105049. PubMed ID: 37001474 [TBL] [Abstract][Full Text] [Related]
15. A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis. Zhao QY; Liu LP; Luo JC; Luo YW; Wang H; Zhang YJ; Gui R; Tu GW; Luo Z Front Med (Lausanne); 2020; 7():637434. PubMed ID: 33553224 [No Abstract] [Full Text] [Related]
16. An early warning model for predicting major adverse kidney events within 30 days in sepsis patients. Yu X; Xin Q; Hao Y; Zhang J; Ma T Front Med (Lausanne); 2023; 10():1327036. PubMed ID: 38469459 [TBL] [Abstract][Full Text] [Related]
17. A Nomogram for Predicting Hospital Mortality in Intensive Care Unit Patients with Acute Myocardial Infarction. Tan L; Xu Q; Shi R Int J Gen Med; 2021; 14():5863-5877. PubMed ID: 34566426 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of a prediction model for in-hospital death in patients with heart failure and atrial fibrillation. Yan M; Liu H; Xu Q; Yu S; Tang K; Xie Y BMC Cardiovasc Disord; 2023 Oct; 23(1):505. PubMed ID: 37821809 [TBL] [Abstract][Full Text] [Related]
19. Development and external validation of a prediction model for the premature circuit clotting of continuous renal replacement therapy in critically ill patients. Yang E; Wang Q; Guo J; Wei J; Zhang C; Zhao W; He X; Bo E; Mao Y; Yang H Intensive Crit Care Nurs; 2024 Oct; 84():103703. PubMed ID: 38704337 [TBL] [Abstract][Full Text] [Related]
20. Construction and validation of a nomogram prediction model for the progression to septic shock in elderly patients with urosepsis. Wei J; Zeng R; Liang R; Liu S; Hua T; Xiao W; Zhu H; Liu Y; Yang M Heliyon; 2024 Jun; 10(11):e32454. PubMed ID: 38961944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]