These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An implantable wireless optogenetic stimulation system for peripheral nerve control. Kang-Il Song ; Park SE; Myoung-Soo Kim ; Chulmin Joo ; Yong-Jun Kim ; Suh JK; Dosik Hwang ; Inchan Youn Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1033-6. PubMed ID: 26736441 [TBL] [Abstract][Full Text] [Related]
4. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467 [TBL] [Abstract][Full Text] [Related]
5. A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Rossi MA; Go V; Murphy T; Fu Q; Morizio J; Yin HH Front Integr Neurosci; 2015; 9():8. PubMed ID: 25713516 [TBL] [Abstract][Full Text] [Related]
6. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex. Shang X; Ling W; Chen Y; Li C; Huang X Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144 [TBL] [Abstract][Full Text] [Related]
7. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555 [TBL] [Abstract][Full Text] [Related]
9. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174 [TBL] [Abstract][Full Text] [Related]
10. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator. Lee ST; Williams PA; Braine CE; Lin DT; John SW; Irazoqui PP IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):655-64. PubMed ID: 25608307 [TBL] [Abstract][Full Text] [Related]
11. A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations. Park J; Kim K; Kim Y; Kim TS; Min IS; Li B; Cho YU; Lee C; Lee JY; Gao Y; Kang K; Kim DH; Choi WJ; Shin HB; Kang HK; Song YM; Cheng H; Cho IJ; Yu KJ Sci Adv; 2023 Sep; 9(39):eadi8918. PubMed ID: 37756405 [TBL] [Abstract][Full Text] [Related]
13. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330 [TBL] [Abstract][Full Text] [Related]
14. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Kwon KY; Lee HM; Ghovanloo M; Weber A; Li W Front Syst Neurosci; 2015; 9():69. PubMed ID: 25999823 [TBL] [Abstract][Full Text] [Related]
15. Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems. Karatum O; Gwak MJ; Hyun J; Onal A; Koirala GR; Kim TI; Nizamoglu S Chem Soc Rev; 2023 May; 52(10):3326-3352. PubMed ID: 37018031 [TBL] [Abstract][Full Text] [Related]
16. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice. Berg L; Gerdey J; Masseck OA J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936 [TBL] [Abstract][Full Text] [Related]
17. Pulse-Width Modulation of Optogenetic Photo-Stimulation Intensity for Application to Full-Implantable Light Sources. Chen FB; Budgett DM; Sun Y; Malpas S; McCormick D; Freestone PS IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):28-34. PubMed ID: 27542183 [TBL] [Abstract][Full Text] [Related]
18. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798 [TBL] [Abstract][Full Text] [Related]
19. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Zhang Y; Mickle AD; Gutruf P; McIlvried LA; Guo H; Wu Y; Golden JP; Xue Y; Grajales-Reyes JG; Wang X; Krishnan S; Xie Y; Peng D; Su CJ; Zhang F; Reeder JT; Vogt SK; Huang Y; Rogers JA; Gereau RW Sci Adv; 2019 Jul; 5(7):eaaw5296. PubMed ID: 31281895 [TBL] [Abstract][Full Text] [Related]
20. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Folcher M; Oesterle S; Zwicky K; Thekkottil T; Heymoz J; Hohmann M; Christen M; Daoud El-Baba M; Buchmann P; Fussenegger M Nat Commun; 2014 Nov; 5():5392. PubMed ID: 25386727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]