These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 33714186)
1. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Gong Z; Liu X; Zhou B; Wang G; Guan X; Xu Y; Zhang J; Hong Z; Cao J; Sun X; Gao Z; Lu H; Pan X; Bai J Colloids Surf B Biointerfaces; 2021 Jun; 202():111673. PubMed ID: 33714186 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-Induced Transformable Peptide Nanocarriers with Enhanced Drug Permeability and Retention to Improve Tumor Nanotherapy Efficacy. Gong Z; Zhou B; Liu X; Cao J; Hong Z; Wang J; Sun X; Yuan X; Tan H; Ji H; Bai J ACS Appl Mater Interfaces; 2021 Dec; 13(47):55913-55927. PubMed ID: 34784165 [TBL] [Abstract][Full Text] [Related]
3. Integrin-targeted zwitterionic polymeric nanoparticles with acid-induced disassembly property for enhanced drug accumulation and release in tumor. Huang P; Song H; Wang W; Sun Y; Zhou J; Wang X; Liu J; Liu J; Kong D; Dong A Biomacromolecules; 2014 Aug; 15(8):3128-38. PubMed ID: 25054812 [TBL] [Abstract][Full Text] [Related]
4. Morphological transformation enhances Tumor Retention by Regulating the Self-assembly of Doxorubicin-peptide Conjugates. Xu L; Wang Y; Zhu C; Ren S; Shao Y; Wu L; Li W; Jia X; Hu R; Chen R; Chen Z Theranostics; 2020; 10(18):8162-8178. PubMed ID: 32724464 [No Abstract] [Full Text] [Related]
5. Ligand-Modified Erythrocyte Membrane-Cloaked Metal-Organic Framework Nanoparticles for Targeted Antitumor Therapy. Lin Y; Zhong Y; Chen Y; Li L; Chen G; Zhang J; Li P; Zhou C; Sun Y; Ma Y; Xie Z; Liao Q Mol Pharm; 2020 Sep; 17(9):3328-3341. PubMed ID: 32804508 [TBL] [Abstract][Full Text] [Related]
6. A sequentially responsive and structure-transformable nanoparticle with a comprehensively improved 'CAPIR cascade' for enhanced antitumor effect. Xu C; Sun Y; Yu Y; Hu M; Yang C; Zhang Z Nanoscale; 2019 Jan; 11(3):1177-1194. PubMed ID: 30601512 [TBL] [Abstract][Full Text] [Related]
7. Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy. Wang TW; Yeh CW; Kuan CH; Wang LW; Chen LH; Wu HC; Sun JS Acta Biomater; 2017 Aug; 58():54-66. PubMed ID: 28606810 [TBL] [Abstract][Full Text] [Related]
8. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo. Chen WL; Yang SD; Li F; Qu CX; Liu Y; Wang Y; Wang DD; Zhang XN Acta Biomater; 2018 Nov; 81():219-230. PubMed ID: 30267887 [TBL] [Abstract][Full Text] [Related]
9. A Dual pH-Responsive DOX-Encapsulated Liposome Combined with Glucose Administration Enhanced Therapeutic Efficacy of Chemotherapy for Cancer. Zhai L; Luo C; Gao H; Du S; Shi J; Wang F Int J Nanomedicine; 2021; 16():3185-3199. PubMed ID: 34007173 [TBL] [Abstract][Full Text] [Related]
10. pH-triggered morphological change in a self-assembling amphiphilic peptide used as an antitumor drug carrier. Gong Z; Liu X; Wu J; Li X; Tang Z; Deng Y; Sun X; Chen K; Gao Z; Bai J Nanotechnology; 2020 Apr; 31(16):165601. PubMed ID: 31891937 [TBL] [Abstract][Full Text] [Related]
11. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Haque ST; Islam RA; Gan SH; Chowdhury EH Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937817 [No Abstract] [Full Text] [Related]
12. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment. Ye G; Jiang Y; Yang X; Hu H; Wang B; Sun L; Yang VC; Sun D; Gao W ACS Appl Mater Interfaces; 2018 Jan; 10(1):278-289. PubMed ID: 29260563 [TBL] [Abstract][Full Text] [Related]
13. Small Peptide-Doxorubicin Co-Assembly for Synergistic Cancer Therapy. Li S; Chen X; Chen H; Peng J; Yang X Molecules; 2020 Jan; 25(3):. PubMed ID: 31979298 [TBL] [Abstract][Full Text] [Related]
14. Rapid pH-responsive self-disintegrating nanoassemblies balance tumor accumulation and penetration for enhanced anti-breast cancer therapy. Li J; Wang Y; Xu C; Yu Q; Wang X; Xie H; Tian L; Qiu Y; Guo R; Lu Z; Li M; He Q Acta Biomater; 2021 Oct; 134():546-558. PubMed ID: 33882357 [TBL] [Abstract][Full Text] [Related]
16. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Chen WL; Li F; Tang Y; Yang SD; Li JZ; Yuan ZQ; Liu Y; Zhou XF; Liu C; Zhang XN Int J Nanomedicine; 2017; 12():4241-4256. PubMed ID: 28652730 [TBL] [Abstract][Full Text] [Related]
17. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S; Singh N; Surnar B; Jayakannan M Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038 [TBL] [Abstract][Full Text] [Related]
18. Self-assembled peptide nanoparticles responsive to multiple tumor microenvironment triggers provide highly efficient targeted delivery and release of antitumor drug. Jiang X; Fan X; Xu W; Zhao C; Wu H; Zhang R; Wu G J Control Release; 2019 Dec; 316():196-207. PubMed ID: 31682910 [TBL] [Abstract][Full Text] [Related]
19. Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. Li Y; Lin J; Zhi X; Li P; Jiang X; Yuan J Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():606-614. PubMed ID: 30033293 [TBL] [Abstract][Full Text] [Related]
20. Doxorubicin-triggered self-assembly of native amphiphilic peptides into spherical nanoparticles. Fan X; Zhao F; Wang X; Wu G Oncotarget; 2016 Sep; 7(36):58445-58458. PubMed ID: 27533248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]