These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33714215)

  • 1. Simulating contaminant transport in unsaturated and saturated groundwater zones.
    Sarma R; Singh SK
    Water Environ Res; 2021 Sep; 93(9):1496-1509. PubMed ID: 33714215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study of variable-density flow and transport in unsaturated-saturated porous media.
    Liu Y; Kuang X; Jiao JJ; Li J
    J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of Solute Transport in the Vadose Zone into the "HYDRUS Package for MODFLOW".
    Beegum S; Šimůnek J; Szymkiewicz A; Sudheer KP; Nambi IM
    Ground Water; 2019 May; 57(3):392-408. PubMed ID: 30062703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.
    Delin GN; Herkelrath WN
    J Contam Hydrol; 2017 May; 200():49-59. PubMed ID: 28390700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach.
    Geng X; Boufadel MC; Xia Y; Li H; Zhao L; Jackson NL; Miller RS
    J Contam Hydrol; 2014 Sep; 165():37-52. PubMed ID: 25108178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites.
    Locatelli L; Binning PJ; Sanchez-Vila X; Søndergaard GL; Rosenberg L; Bjerg PL
    J Contam Hydrol; 2019 Feb; 221():35-49. PubMed ID: 30638639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.
    Wang L; Butcher AS; Stuart ME; Gooddy DC; Bloomfield JP
    Environ Geochem Health; 2013 Oct; 35(5):667-81. PubMed ID: 23801341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Coupled Groundwater-Surface Water Modeling Framework for Simulating Transition Zone Processes.
    Mugunthan P; Russell KT; Gong B; Riley MJ; Chin A; McDonald BG; Eastcott LJ
    Ground Water; 2017 May; 55(3):302-315. PubMed ID: 27775831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer.
    Orban P; Brouyère S; Batlle-Aguilar J; Couturier J; Goderniaux P; Leroy M; Maloszewski P; Dassargues A
    J Contam Hydrol; 2010 Oct; 118(1-2):79-93. PubMed ID: 20864207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D.
    Bailey RT; Morway ED; Niswonger RG; Gates TK
    Ground Water; 2013; 51(5):752-61. PubMed ID: 23131109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. nZVI injection into variably saturated soils: Field and modeling study.
    Chowdhury AI; Krol MM; Kocur CM; Boparai HK; Weber KP; Sleep BE; O'Carroll DM
    J Contam Hydrol; 2015 Dec; 183():16-28. PubMed ID: 26496622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling sewage leakage and transport in carbonate aquifer using carbamazepine as an indicator.
    Dvory NZ; Kuznetsov M; Livshitz Y; Gasser G; Pankratov I; Lev O; Adar E; Yakirevich A
    Water Res; 2018 Jan; 128():157-170. PubMed ID: 29102695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the migration of immiscible contaminant fluid flow in homogeneous and heterogeneous aquifers with high-precision numerical simulations.
    Feo A; Celico F
    PLoS One; 2022; 17(4):e0266486. PubMed ID: 35468165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey.
    Sengör SS; Unlü K
    J Contam Hydrol; 2013 Jul; 150():77-92. PubMed ID: 23680827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.
    Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD
    J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modeling approach for agricultural water management in citrus orchards: cost-effective irrigation scheduling and agrochemical transport simulation.
    Kourgialas NN; Karatzas GP
    Environ Monit Assess; 2015 Jul; 187(7):462. PubMed ID: 26108746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Groundwater pumping effects on contaminant loading management in agricultural regions.
    Park DK; Bae GO; Kim SK; Lee KK
    J Environ Manage; 2014 Jun; 139():97-108. PubMed ID: 24681649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source screening module for contaminant transport analysis through vadose and saturated zones.
    Bedekar V; Neville C; Tonkin M
    Ground Water; 2012; 50(6):954-8. PubMed ID: 22716000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations.
    Fretwell BA; Burgess WG; Barker JA; Jefferies NL
    J Contam Hydrol; 2005 Jun; 78(1-2):27-52. PubMed ID: 15949606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.