These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3371423)

  • 1. How is the flagellar length of mature sperm determined? I. Comparison of flagellar growth in spermatids between newt and Xenopus in vitro.
    Uno S; Abé S
    Exp Cell Res; 1988 May; 176(1):194-7. PubMed ID: 3371423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How is the flagellar length of mature sperm determined? II. Comparison of tubulin synthesis in spermatids between newt and Xenopus in vitro.
    Uno S; Abé S
    Exp Cell Res; 1990 Feb; 186(2):279-87. PubMed ID: 2298244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How is the flagellar length of mature sperm determined? III. Comparison of initial growth rate of flagella in spermatids from Cynops and Xenopus in the presence and absence of cycloheximide.
    Abé S; Uemura M
    Exp Cell Res; 1992 Feb; 198(2):373-4. PubMed ID: 1729141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meiosis of primary spermatocytes and early spermiogenesis in the resultant spermatids in newt, Cynops pyrrhogaster in vitro.
    Abe SI
    Differentiation; 1981; 20(1):65-70. PubMed ID: 7308609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of second meiotic division and a switching over to flagellar formation in secondary spermatocytes of newt by cycloheximide.
    Kiyotaka Y; Abe SI
    Exp Cell Res; 1983 Apr; 144(2):265-74. PubMed ID: 6840216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genesis of newt sperm axial fiber: cDNA cloning and expression of a 29 kDa protein, a major component of the axial fiber, during spermatogenesis.
    Furukawa K; Yamamoto T; Takamune K; Sugimoto Y; Eguchi G; Abé S
    Int J Dev Biol; 1996 Dec; 40(6):1109-18. PubMed ID: 9032016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sperm and its formation in the scorpion Centruroides vittatus.
    Riess RW; Barker KR; Biesele JJ
    Cellule; 1978; 72(3):257-64. PubMed ID: 743731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential development of flagellar defects in spermatids and epididymal spermatozoa of selenium-deficient rats.
    Olson GE; Winfrey VP; Hill KE; Burk RF
    Reproduction; 2004 Mar; 127(3):335-42. PubMed ID: 15016953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of flagella during interphase in secondary spermatocytes from Xenopus laevis in vitro.
    Abé S; Asakura S; Ukeshima A
    J Exp Zool; 1988 Apr; 246(1):65-70. PubMed ID: 3290387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study of the structure of sperm flagella: doublets 1, 2, 5, and 6].
    Mattei C; Mattei X; Marchand B
    J Ultrastruct Res; 1979 Dec; 69(3):371-7. PubMed ID: 513187
    [No Abstract]   [Full Text] [Related]  

  • 11. [Electron microscope study of spermatogenesis in two cestodes acanthobothrium filicolle benedenii Loennberg, 1889 and Onchobothrium uncinatum (Rud., 1819) (Tetraphyllidea, Onchobothriidae) (author's transl)].
    Maamouri FM; Swiderski Z
    Z Parasitenkd; 1975 Oct; 47(4):269-81. PubMed ID: 1210530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spermiogenesis in Xenopus laevis: from late spermatids to spermatozoa.
    Bernardini G; Podini P; Maci R; Camatini M
    Mol Reprod Dev; 1990 Aug; 26(4):347-55. PubMed ID: 2223083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testis structure, spermatogenesis, spermatocytogenesis, and sperm structure in cardinal fish (Apogonidae, Perciformes).
    Fishelson L; Delarea Y; Gon O
    Anat Embryol (Berl); 2006 Jan; 211(1):31-46. PubMed ID: 16374609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cDNA cloning and expression of Xenopus sperm-specific basic nuclear protein 5 (SP5) gene.
    Ariyoshi N; Hiyoshi H; Katagiri C; Abé SI
    Mol Reprod Dev; 1994 Apr; 37(4):363-9. PubMed ID: 8011321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertional mutation that causes acrosomal hypo-development: its relationship to sperm head shaping.
    Russell LD; Ying L; Overbeek PA
    Anat Rec; 1994 Apr; 238(4):437-53. PubMed ID: 8192241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear elongation of dissociated newt spermatids in vitro and their nuclear shortening by antimicrotubule agents.
    Abé S; Uno S
    Exp Cell Res; 1984 Sep; 154(1):243-55. PubMed ID: 6468526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synacrosomal formation after cell fusion of round spermatids of Xenopus laevis.
    Asakura S; Abé S
    Exp Cell Res; 1989 Apr; 181(2):566-73. PubMed ID: 2647499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term in-vitro culture and cryopreservation of spermatogenic cells used for human in-vitro conception.
    Aslam I; Fishel S
    Hum Reprod; 1998 Mar; 13(3):634-8. PubMed ID: 9572425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiation and stimulation of spermatogenesis in vitro by mammalian follicle-stimulating hormone in the Japanese newt, Cynops pyrrhogaster.
    Abé SI; Ji ZS
    Int J Dev Biol; 1994 Jun; 38(2):201-8. PubMed ID: 7981029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.