BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33714340)

  • 1. Thermal Boundary Resistance Extraction of GaN-on-Diamond Substrate from Transmission Line Method Pattern Using Micro-Raman Spectroscopy and Thermal Simulation.
    Ki RS; Seo KS; Cha HY
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4434-4437. PubMed ID: 33714340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond.
    Field DE; Cuenca JA; Smith M; Fairclough SM; Massabuau FC; Pomeroy JW; Williams O; Oliver RA; Thayne I; Kuball M
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):54138-54145. PubMed ID: 33196180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review.
    Zhan T; Xu M; Cao Z; Zheng C; Kurita H; Narita F; Wu YJ; Xu Y; Wang H; Song M; Wang W; Zhou Y; Liu X; Shi Y; Jia Y; Guan S; Hanajiri T; Maekawa T; Okino A; Watanabe T
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Analysis and Operational Characteristics of an AlGaN/GaN High Electron Mobility Transistor with Copper-Filled Structures: A Simulation Study.
    Jang KW; Hwang IT; Kim HJ; Lee SH; Lim JW; Kim HS
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31906083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic Analysis of AlGaN/GaN HEMT with Composited Buffer Layer on High-Heat Dissipation Poly-AlN Substrates.
    Huang CR; Chiu HC; Liu CH; Wang HC; Kao HL; Chen CT; Chang KJ
    Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C-SiC/Diamond Junctions for Practical Device Processes.
    Kagawa R; Cheng Z; Kawamura K; Ohno Y; Moriyama C; Sakaida Y; Ouchi S; Uratani H; Inoue K; Nagai Y; Shigekawa N; Liang J
    Small; 2024 Mar; 20(13):e2305574. PubMed ID: 37964293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling.
    Malakoutian M; Field DE; Hines NJ; Pasayat S; Graham S; Kuball M; Chowdhury S
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60553-60560. PubMed ID: 34875169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Behavior of an AlGaN/GaN-Based Schottky Barrier Diode on Diamond and Silicon Substrates.
    Kim ZS; Lee HS; Bae SB; Ahn H; Lee SH; Lim JW; Kang DM
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4429-4433. PubMed ID: 33714339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices.
    Cheng Z; Mu F; Yates L; Suga T; Graham S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Properties of Schottky Barrier Diode on AlGaN/GaN Heterostructures on Chemical Vapor Deposition Diamond.
    Kim ZS; Lee HS; Bae SB; Nam E; Lim JW
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6119-6122. PubMed ID: 31026919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Management of GaN-on-Si High Electron Mobility Transistor by Copper Filled Micro-Trench Structure.
    Mohanty SK; Chen YY; Yeh PH; Horng RH
    Sci Rep; 2019 Dec; 9(1):19691. PubMed ID: 31873168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers.
    Guo H; Li Y; Yu X; Zhou J; Kong Y
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal property evaluation of a 2.5D integration method with device level microchannel direct cooling for a high-power GaN HEMT device.
    Lian T; Xia Y; Wang Z; Yang X; Fu Z; Kong X; Lin S; Ma S
    Microsyst Nanoeng; 2022; 8():119. PubMed ID: 36389055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Analysis of Flip-Chip Bonding Designs for GaN Power HEMTs with an On-Chip Heat-Spreading Layer.
    Hong KB; Peng CY; Lin WC; Chen KL; Chen SC; Kuo HC; Chang EY; Lin CH
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling.
    Zhou Y; Anaya J; Pomeroy J; Sun H; Gu X; Xie A; Beam E; Becker M; Grotjohn TA; Lee C; Kuball M
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34416-34422. PubMed ID: 28901127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices.
    Yates L; Anderson J; Gu X; Lee C; Bai T; Mecklenburg M; Aoki T; Goorsky MS; Kuball M; Piner EL; Graham S
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24302-24309. PubMed ID: 29939717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.
    Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces.
    Mu F; Cheng Z; Shi J; Shin S; Xu B; Shiomi J; Graham S; Suga T
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33428-33434. PubMed ID: 31408316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ga
    Song Y; Shoemaker D; Leach JH; McGray C; Huang HL; Bhattacharyya A; Zhang Y; Gonzalez-Valle CU; Hess T; Zhukovsky S; Ferri K; Lavelle RM; Perez C; Snyder DW; Maria JP; Ramos-Alvarado B; Wang X; Krishnamoorthy S; Hwang J; Foley BM; Choi S
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40817-40829. PubMed ID: 34470105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.