These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33714969)

  • 1. A zebrafish toolbox for biomechanical signaling in cardiovascular development and disease.
    Rödel CJ; Abdelilah-Seyfried S
    Curr Opin Hematol; 2021 May; 28(3):198-207. PubMed ID: 33714969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanosensitive Pathways Involved in Cardiovascular Development and Homeostasis in Zebrafish.
    Li R; Baek KI; Chang CC; Zhou B; Hsiai TK
    J Vasc Res; 2019; 56(6):273-283. PubMed ID: 31466069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanotransduction in the Cardiovascular System: From Developmental Origins to Homeostasis and Pathology.
    Garoffolo G; Pesce M
    Cells; 2019 Dec; 8(12):. PubMed ID: 31835742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High content screening for modulators of cardiovascular or global developmental pathways in zebrafish.
    Williams CH; Hong CC
    Methods Mol Biol; 2015; 1263():167-74. PubMed ID: 25618344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanobiology of zebrafish cardiac valve leaflet formation.
    Paolini A; Abdelilah-Seyfried S
    Curr Opin Cell Biol; 2018 Dec; 55():52-58. PubMed ID: 30007126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic Activities of Vegfr3/Flt4 and Notch1b Fine-tune Mechanosensitive Signaling during Zebrafish Cardiac Valvulogenesis.
    Fontana F; Haack T; Reichenbach M; Knaus P; Puceat M; Abdelilah-Seyfried S
    Cell Rep; 2020 Jul; 32(2):107883. PubMed ID: 32668254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations.
    Zheng X; Xu C; Di Lorenzo A; Kleaveland B; Zou Z; Seiler C; Chen M; Cheng L; Xiao J; He J; Pack MA; Sessa WC; Kahn ML
    J Clin Invest; 2010 Aug; 120(8):2795-804. PubMed ID: 20592472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish: A tool for chemical screens.
    Tsang M
    Birth Defects Res C Embryo Today; 2010 Sep; 90(3):185-92. PubMed ID: 20860058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development.
    Opitz R; Maquet E; Huisken J; Antonica F; Trubiroha A; Pottier G; Janssens V; Costagliola S
    Dev Biol; 2012 Dec; 372(2):203-16. PubMed ID: 23022354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation.
    Hsu JJ; Vedula V; Baek KI; Chen C; Chen J; Chou MI; Lam J; Subhedar S; Wang J; Ding Y; Chang CC; Lee J; Demer LL; Tintut Y; Marsden AL; Hsiai TK
    JCI Insight; 2019 Apr; 5(10):. PubMed ID: 30973827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-Molecule Screening in Zebrafish Embryos Identifies Signaling Pathways Regulating Early Thyroid Development.
    Haerlingen B; Opitz R; Vandernoot I; Trubiroha A; Gillotay P; Giusti N; Costagliola S
    Thyroid; 2019 Nov; 29(11):1683-1703. PubMed ID: 31507237
    [No Abstract]   [Full Text] [Related]  

  • 12. In vivo biofluid dynamic imaging in the developing zebrafish.
    Hove JR
    Birth Defects Res C Embryo Today; 2004 Sep; 72(3):277-89. PubMed ID: 15495183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood Flow Suppresses Vascular Anomalies in a Zebrafish Model of Cerebral Cavernous Malformations.
    Rödel CJ; Otten C; Donat S; Lourenço M; Fischer D; Kuropka B; Paolini A; Freund C; Abdelilah-Seyfried S
    Circ Res; 2019 Oct; 125(10):e43-e54. PubMed ID: 31495257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanotransduction of hemodynamic forces regulates organogenesis].
    Sidi S; Rosa FM
    Med Sci (Paris); 2004 May; 20(5):557-61. PubMed ID: 15190475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gal4 Driver Transgenic Zebrafish: Powerful Tools to Study Developmental Biology, Organogenesis, and Neuroscience.
    Kawakami K; Asakawa K; Hibi M; Itoh M; Muto A; Wada H
    Adv Genet; 2016; 95():65-87. PubMed ID: 27503354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time quantification of subcellular H
    Panieri E; Millia C; Santoro MM
    Free Radic Biol Med; 2017 Aug; 109():189-200. PubMed ID: 28192232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent insights into vascular development from studies in zebrafish.
    Matsuoka RL; Stainier DYR
    Curr Opin Hematol; 2018 May; 25(3):204-211. PubMed ID: 29438257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and Application of the Zebrafish
    Lu S; Hu M; Wang Z; Liu H; Kou Y; Lyu Z; Tian J
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33198188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling cardiovascular disease in the zebrafish.
    Chico TJ; Ingham PW; Crossman DC
    Trends Cardiovasc Med; 2008 May; 18(4):150-5. PubMed ID: 18555188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enteric nervous system development in avian and zebrafish models.
    Heanue TA; Shepherd IT; Burns AJ
    Dev Biol; 2016 Sep; 417(2):129-38. PubMed ID: 27235814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.