These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33714969)

  • 21. The admiR-able advances in cardiovascular biology through the zebrafish model system.
    Gays D; Santoro MM
    Cell Mol Life Sci; 2013 Jul; 70(14):2489-503. PubMed ID: 23069988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semaphorin signaling in cardiovascular development.
    Epstein JA; Aghajanian H; Singh MK
    Cell Metab; 2015 Feb; 21(2):163-173. PubMed ID: 25651171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology.
    Jozefczuk E; Guzik TJ; Siedlinski M
    Pharmacol Res; 2020 Jun; 156():104793. PubMed ID: 32278039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelial mechanotransduction in cardiovascular development and regeneration: emerging approaches and animal models.
    Cavallero S; Blázquez-Medela AM; Satta S; Hsiai TK
    Curr Top Membr; 2021; 87():131-151. PubMed ID: 34696883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ZebRA: An overview of retinoic acid signaling during zebrafish development.
    Samarut E; Fraher D; Laudet V; Gibert Y
    Biochim Biophys Acta; 2015 Feb; 1849(2):73-83. PubMed ID: 24928143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zebrafish models in cardiac development and congenital heart birth defects.
    Tu S; Chi NC
    Differentiation; 2012 Jul; 84(1):4-16. PubMed ID: 22704690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Zebrafish as the model system to study organogenesis and regeneration].
    Li L; Luo LF
    Yi Chuan; 2013 Apr; 35(4):421-32. PubMed ID: 23659932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical factors in cardiovascular disease.
    Evans PC; Kwak BR
    Cardiovasc Res; 2013 Jul; 99(2):229-31. PubMed ID: 23737494
    [No Abstract]   [Full Text] [Related]  

  • 29. "Casting" light on the role of glycosylation during embryonic development: insights from zebrafish.
    Flanagan-Steet HR; Steet R
    Glycoconj J; 2013 Jan; 30(1):33-40. PubMed ID: 22638861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis.
    Goddard LM; Duchemin AL; Ramalingan H; Wu B; Chen M; Bamezai S; Yang J; Li L; Morley MP; Wang T; Scherrer-Crosbie M; Frank DB; Engleka KA; Jameson SC; Morrisey EE; Carroll TJ; Zhou B; Vermot J; Kahn ML
    Dev Cell; 2017 Nov; 43(3):274-289.e5. PubMed ID: 29056552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV.
    Chen CY; Patrick MJ; Corti P; Kowalski W; Roman BL; Pekkan K
    Biorheology; 2011; 48(5):305-21. PubMed ID: 22433571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ocular vessel patterning in zebrafish is indirectly regulated by Hedgehog signaling.
    Weiss O; Kaufman R; Mishani E; Inbal A
    Int J Dev Biol; 2017; 61(3-4-5):277-284. PubMed ID: 28621424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissection of cardiovascular development and disease pathways in zebrafish.
    Chan J; Mably JD
    Prog Mol Biol Transl Sci; 2011; 100():111-53. PubMed ID: 21377626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanosensitive Notch-Dll4 and Klf2-Wnt9 signaling pathways intersect in guiding valvulogenesis in zebrafish.
    Paolini A; Fontana F; Pham VC; Rödel CJ; Abdelilah-Seyfried S
    Cell Rep; 2021 Oct; 37(1):109782. PubMed ID: 34610316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of β1 integrin-Klf2-mediated angiogenesis by CCM proteins.
    Renz M; Otten C; Faurobert E; Rudolph F; Zhu Y; Boulday G; Duchene J; Mickoleit M; Dietrich AC; Ramspacher C; Steed E; Manet-Dupé S; Benz A; Hassel D; Vermot J; Huisken J; Tournier-Lasserve E; Felbor U; Sure U; Albiges-Rizo C; Abdelilah-Seyfried S
    Dev Cell; 2015 Jan; 32(2):181-90. PubMed ID: 25625207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemodynamic Control of Endothelial Cell Fates in Development.
    García-Cardeña G; Slegtenhorst BR
    Annu Rev Cell Dev Biol; 2016 Oct; 32():633-648. PubMed ID: 27712101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish.
    Gunawan F; Gentile A; Gauvrit S; Stainier DYR; Bensimon-Brito A
    Circ Res; 2020 Apr; 126(8):968-984. PubMed ID: 32070236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zebrafish Rhabdomyosarcoma.
    Phelps M; Chen E
    Adv Exp Med Biol; 2016; 916():371-89. PubMed ID: 27165362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zebrafish genetic models for arrhythmia.
    Milan DJ; Macrae CA
    Prog Biophys Mol Biol; 2008; 98(2-3):301-8. PubMed ID: 19351520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE.
    Gut P; Reischauer S; Stainier DYR; Arnaout R
    Physiol Rev; 2017 Jul; 97(3):889-938. PubMed ID: 28468832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.