These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33715030)
21. The plant-associated bacterium Stenotrophomonas rhizophila expresses a new enzyme for the synthesis of the compatible solute glucosylglycerol. Hagemann M; Ribbeck-Busch K; Klähn S; Hasse D; Steinbruch R; Berg G J Bacteriol; 2008 Sep; 190(17):5898-906. PubMed ID: 18586931 [TBL] [Abstract][Full Text] [Related]
23. Detoxification of multiple heavy metals by a half-molecule ABC transporter, HMT-1, and coelomocytes of Caenorhabditis elegans. Schwartz MS; Benci JL; Selote DS; Sharma AK; Chen AG; Dang H; Fares H; Vatamaniuk OK PLoS One; 2010 Mar; 5(3):e9564. PubMed ID: 20221439 [TBL] [Abstract][Full Text] [Related]
24. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833 [TBL] [Abstract][Full Text] [Related]
25. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Mazhar SH; Herzberg M; Ben Fekih I; Zhang C; Bello SK; Li YP; Su J; Xu J; Feng R; Zhou S; Rensing C Front Microbiol; 2020; 11():47. PubMed ID: 32117100 [TBL] [Abstract][Full Text] [Related]
26. Bacterial resistances to toxic metal ions--a review. Silver S Gene; 1996 Nov; 179(1):9-19. PubMed ID: 8991852 [TBL] [Abstract][Full Text] [Related]
27. A molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila. Ribbeck-Busch K; Roder A; Hasse D; de Boer W; Martínez JL; Hagemann M; Berg G Environ Microbiol; 2005 Nov; 7(11):1853-8. PubMed ID: 16232300 [TBL] [Abstract][Full Text] [Related]
28. Complete genome sequence data of multidrug-resistant Stenotrophomonas sp. strain SXG-1. Zhang X; Shang B; Li X; Li Z; Tao S J Glob Antimicrob Resist; 2020 Sep; 22():206-209. PubMed ID: 32311503 [TBL] [Abstract][Full Text] [Related]
29. Draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 strain isolated from radiation-polluted soil and its pathogenic potential. Wang Y; Dai Z; Zhang Z; Zhu L; Zhang H; Huang H; Jiang L J Glob Antimicrob Resist; 2021 Mar; 24():121-123. PubMed ID: 33373734 [TBL] [Abstract][Full Text] [Related]
30. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis. Pan X; Lin D; Zheng Y; Zhang Q; Yin Y; Cai L; Fang H; Yu Y Sci Rep; 2016 Feb; 6():21332. PubMed ID: 26888254 [TBL] [Abstract][Full Text] [Related]
31. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis. Ilyas S; Rehman A Environ Monit Assess; 2015 Jan; 187(1):4115. PubMed ID: 25384372 [TBL] [Abstract][Full Text] [Related]
32. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Luo L; Ke C; Guo X; Shi B; Huang M Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996 [TBL] [Abstract][Full Text] [Related]
33. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Zeng W; Li F; Wu C; Yu R; Wu X; Shen L; Liu Y; Qiu G; Li J Bioprocess Biosyst Eng; 2020 Jan; 43(1):153-167. PubMed ID: 31549306 [TBL] [Abstract][Full Text] [Related]
34. Two RND proteins involved in heavy metal efflux in Caulobacter crescentus belong to separate clusters within proteobacteria. Valencia EY; Braz VS; Guzzo C; Marques MV BMC Microbiol; 2013 Apr; 13():79. PubMed ID: 23578014 [TBL] [Abstract][Full Text] [Related]
35. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. von Rozycki T; Nies DH Antonie Van Leeuwenhoek; 2009 Aug; 96(2):115-39. PubMed ID: 18830684 [TBL] [Abstract][Full Text] [Related]
36. Heavy metal transport by the CusCFBA efflux system. Delmar JA; Su CC; Yu EW Protein Sci; 2015 Nov; 24(11):1720-36. PubMed ID: 26258953 [TBL] [Abstract][Full Text] [Related]
37. From industrial sites to environmental applications with Cupriavidus metallidurans. Diels L; Van Roy S; Taghavi S; Van Houdt R Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590 [TBL] [Abstract][Full Text] [Related]
38. Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Ayangbenro AS; Babalola OO Sci Rep; 2020 Nov; 10(1):19660. PubMed ID: 33184305 [TBL] [Abstract][Full Text] [Related]
39. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
40. The dynamic roles of intracellular vacuoles in heavy metal detoxification by Rhodotorula mucilaginosa. Shi Y; Tang L; Shao Q; Jiang Y; Wang Z; Peng C; Gu T; Li Z J Appl Microbiol; 2024 Sep; 135(9):. PubMed ID: 39284782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]