BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33715066)

  • 1. Histones on fire: the effect of Dun1 and Mrc1 on origin firing and replication of hyper-acetylated genomes.
    Gershon L; Kupiec M
    Curr Genet; 2021 Aug; 67(4):501-510. PubMed ID: 33715066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel role for Dun1 in the regulation of origin firing upon hyper-acetylation of H3K56.
    Gershon L; Kupiec M
    PLoS Genet; 2021 Feb; 17(2):e1009391. PubMed ID: 33600490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between histone H3 lysine 56 deacetylation and chromatin modifiers in response to DNA damage.
    Simoneau A; Delgoshaie N; Celic I; Dai J; Abshiru N; Costantino S; Thibault P; Boeke JD; Verreault A; Wurtele H
    Genetics; 2015 May; 200(1):185-205. PubMed ID: 25786853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent Acetylation of Histone H3 Lysine 56 Compromises the Activity of DNA Replication Origins.
    Tremblay R; Mehrjoo Y; Ahmed O; Simoneau A; McQuaid ME; Affar EB; Nislow C; Giaever G; Wurtele H
    Mol Cell Biol; 2023; 43(11):566-595. PubMed ID: 37811746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hst3p, a histone deacetylase, promotes maintenance of Saccharomyces cerevisiae chromosome III lacking efficient replication origins.
    Irene C; Theis JF; Gresham D; Soteropoulos P; Newlon CS
    Mol Genet Genomics; 2016 Feb; 291(1):271-83. PubMed ID: 26319649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis.
    Che J; Smith S; Kim YJ; Shim EY; Myung K; Lee SE
    PLoS Genet; 2015 Feb; 11(2):e1004990. PubMed ID: 25705897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the histone deacetylase Hst3 by cyclin-dependent kinases and the ubiquitin ligase SCFCdc4.
    Delgoshaie N; Tang X; Kanshin ED; Williams EC; Rudner AD; Thibault P; Tyers M; Verreault A
    J Biol Chem; 2014 May; 289(19):13186-96. PubMed ID: 24648511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4.
    Maas NL; Miller KM; DeFazio LG; Toczyski DP
    Mol Cell; 2006 Jul; 23(1):109-19. PubMed ID: 16818235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DDK/Hsk1 phosphorylates and targets fission yeast histone deacetylase Hst4 for degradation to stabilize stalled DNA replication forks.
    Aricthota S; Haldar D
    Elife; 2021 Oct; 10():. PubMed ID: 34608864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rad53 checkpoint kinase regulation of DNA replication fork rate via Mrc1 phosphorylation.
    McClure AW; Diffley JF
    Elife; 2021 Aug; 10():. PubMed ID: 34387546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Amazing Acrobat: Yeast's Histone H3K56 Juggles Several Important Roles While Maintaining Perfect Balance.
    Gershon L; Kupiec M
    Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33668997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress.
    Simoneau A; Ricard É; Weber S; Hammond-Martel I; Wong LH; Sellam A; Giaever G; Nislow C; Raymond M; Wurtele H
    Nucleic Acids Res; 2016 Apr; 44(6):2706-26. PubMed ID: 26748095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae.
    Hachinohe M; Hanaoka F; Masumoto H
    Genes Cells; 2011 Apr; 16(4):467-77. PubMed ID: 21401809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic interaction of RAD53 protein kinase with histones is important for DNA replication.
    Holzen TM; Sclafani R
    Cell Cycle; 2010 Dec; 9(23):4735-47. PubMed ID: 21099362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation.
    Celic I; Masumoto H; Griffith WP; Meluh P; Cotter RJ; Boeke JD; Verreault A
    Curr Biol; 2006 Jul; 16(13):1280-9. PubMed ID: 16815704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability.
    Kadyrova LY; Mertz TM; Zhang Y; Northam MR; Sheng Z; Lobachev KS; Shcherbakova PV; Kadyrov FA
    PLoS Genet; 2013 Oct; 9(10):e1003899. PubMed ID: 24204308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA.
    Julius J; Peng J; McCulley A; Caridi C; Arnak R; See C; Nugent CI; Feng W; Bachant J
    Mol Biol Cell; 2019 Oct; 30(22):2771-2789. PubMed ID: 31509480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
    Dohrmann PR; Sclafani RA
    Genetics; 2006 Sep; 174(1):87-99. PubMed ID: 16816422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression.
    Sheu YJ; Kinney JB; Stillman B
    Genome Res; 2016 Mar; 26(3):315-30. PubMed ID: 26733669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exo1 phosphorylation inhibits exonuclease activity and prevents fork collapse in rad53 mutants independently of the 14-3-3 proteins.
    Morafraile EC; Bugallo A; Carreira R; Fernández M; Martín-Castellanos C; Blanco MG; Segurado M
    Nucleic Acids Res; 2020 Apr; 48(6):3053-3070. PubMed ID: 32020204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.