These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33715346)

  • 1. Surface Facet Engineering in Nanoporous Gold for Low-Loading Catalysts in Aluminum-Air Batteries.
    Wang M; Meng AC; Fu J; Foucher AC; Serra-Maia R; Stach EA; Detsi E; Pikul JH
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13097-13105. PubMed ID: 33715346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Surface Structure of 3D Nanoporous Gold by Surfactant-Free Electrochemical Potential Cycling.
    Wang Z; Ning S; Liu P; Ding Y; Hirata A; Fujita T; Chen M
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28910497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.
    Wang Z; Liu P; Han J; Cheng C; Ning S; Hirata A; Fujita T; Chen M
    Nat Commun; 2017 Oct; 8(1):1066. PubMed ID: 29057916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage.
    Qiu HJ; Xu HT; Liu L; Wang Y
    Nanoscale; 2015 Jan; 7(2):386-400. PubMed ID: 25419899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction.
    Shao M; Smith BH; Guerrero S; Protsailo L; Su D; Kaneko K; Odell JH; Humbert MP; Sasaki K; Marzullo J; Darling RM
    Phys Chem Chem Phys; 2013 Sep; 15(36):15078-90. PubMed ID: 23925477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct N(2)H(4)/H(2)O(2) fuel cells powered by nanoporous gold leaves.
    Yan X; Meng F; Xie Y; Liu J; Ding Y
    Sci Rep; 2012; 2():941. PubMed ID: 23230507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond dealloying: development of nanoporous gold via metal-induced crystallization and its electrochemical properties.
    Zhang A; Wang J; Schützendübe P; Liang H; Huang Y; Wang Z
    Nanotechnology; 2019 Sep; 30(37):375601. PubMed ID: 31151117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Tunable and Efficient Nanoporous CuAg Alloy Catalysts Toward Methanol Oxidation Reaction Synthesized by Electrochemical Dealloying of Metallic Glassy Precursors.
    Yang L; Li H; Han L; Liu S
    Chemistry; 2023 May; 29(26):e202203968. PubMed ID: 36840684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clarifying the Controversial Catalytic Performance of Co(OH)
    Song Z; Han X; Deng Y; Zhao N; Hu W; Zhong C
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22694-22703. PubMed ID: 28535344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Defects Improved SERS Activity of Nanoporous Gold Prepared by Electrochemical Dealloying.
    Zhang L; Jing Z; Li Z; Fujita T
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ Electrodeposition of Highly Active Silver Catalyst on Carbon Fiber Papers as Binder Free Cathodes for Aluminum-air Battery.
    Hong Q; Lu H
    Sci Rep; 2017 Jun; 7(1):3378. PubMed ID: 28611456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell.
    Guo H; Yin H; Yan X; Shi S; Yu Q; Cao Z; Li J
    Sci Rep; 2016 Dec; 6():39162. PubMed ID: 27966629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eight-Component Nanoporous High-Entropy Oxides with Low Ru Contents as High-Performance Bifunctional Catalysts in Zn-Air Batteries.
    Jin Z; Lyu J; Hu K; Chen Z; Xie G; Liu X; Lin X; Qiu HJ
    Small; 2022 Mar; 18(12):e2107207. PubMed ID: 35092348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
    Cheng F; Chen J
    Chem Soc Rev; 2012 Mar; 41(6):2172-92. PubMed ID: 22254234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid Metal-Enabled Tunable Synthesis of Nanoporous Polycrystalline Copper for Selective CO
    Zhong W; Chi Y; Yu R; Kong C; Zhou S; Han C; Vongsvivut J; Mao G; Kalantar-Zadeh K; Amal R; Tang J; Lu X
    Small; 2024 Jul; ():e2403939. PubMed ID: 39078016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production.
    Song R; Han J; Okugawa M; Belosludov R; Wada T; Jiang J; Wei D; Kudo A; Tian Y; Chen M; Kato H
    Nat Commun; 2022 Sep; 13(1):5157. PubMed ID: 36055985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries.
    Islam S; Nayem SMA; Anjum A; Shaheen Shah S; Ahammad AJS; Aziz MA
    Chem Rec; 2024 Jan; 24(1):e202300017. PubMed ID: 37010435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.