These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33715688)

  • 1.
    Jeong S; Lee T; Lim SJ; Park YK; Kim S; Kim YM
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3764-3768. PubMed ID: 33715688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator.
    Blasenbauer D; Huber F; Mühl J; Fellner J; Lederer J
    Waste Manag; 2023 Apr; 161():142-155. PubMed ID: 36878041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incinerator bottom ash derived from municipal solid waste as a potential catalytic support for biomass tar reforming.
    Ashok J; Das S; Yeo TY; Dewangan N; Kawi S
    Waste Manag; 2018 Dec; 82():249-257. PubMed ID: 30509587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature slagging gasification of municipal solid waste with biomass charcoal as a greener auxiliary fuel.
    Heberlein S; Chan WP; Veksha A; Giannis A; Hupa L; Lisak G
    J Hazard Mater; 2022 Feb; 423(Pt A):127057. PubMed ID: 34523484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.
    Mandal AK; Paramkusam BR; Sinha OP
    Waste Manag Res; 2018 Apr; 36(4):351-360. PubMed ID: 29595099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues.
    Rong L; Maneerung T; Ng JC; Neoh KG; Bay BH; Tong YW; Dai Y; Wang CH
    Waste Manag; 2015 Feb; 36():241-55. PubMed ID: 25532673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.
    Tanigaki N; Manako K; Osada M
    Waste Manag; 2012 Apr; 32(4):667-75. PubMed ID: 22093706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.
    Tanigaki N; Ishida Y; Osada M
    Waste Manag; 2015 Mar; 37():137-46. PubMed ID: 25182227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converting ash into reusable slag at lower carbon footprint: Vitrification of incineration bottom ash in MSW-fueled demonstration-scale slagging gasifier.
    Heberlein S; Chan WP; Hupa L; Zhao Y; Lisak G
    J Environ Manage; 2024 Feb; 352():119967. PubMed ID: 38237332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass recovery and production of manufactured aggregate from MSWI bottom ashes from fluidized bed and grate incineration by means of enhanced treatment.
    Mühl J; Skutan S; Stockinger G; Blasenbauer D; Lederer J
    Waste Manag; 2023 Aug; 168():321-333. PubMed ID: 37336140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2019 Jul; 95():593-603. PubMed ID: 31351646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.
    Sormunen A; Teo K; Tapio S; Riina R
    Waste Manag Res; 2016 Jul; 34(7):595-604. PubMed ID: 27260785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition of ashes from the combustion of solid fuels and municipal waste in households.
    Horák J; Kuboňová L; Bajer S; Dej M; Hopan F; Krpec K; Ochodek T
    J Environ Manage; 2019 Oct; 248():109269. PubMed ID: 31352275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen LA; Rantsi R
    Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2013 Feb; 33(2):373-81. PubMed ID: 23246084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluidized bed gasification of waste-derived fuels.
    Arena U; Zaccariello L; Mastellone ML
    Waste Manag; 2010 Jul; 30(7):1212-9. PubMed ID: 20172708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data.
    Di Gianfilippo M; Costa G; Pantini S; Allegrini E; Lombardi F; Astrup TF
    Waste Manag; 2016 Jan; 47(Pt B):285-98. PubMed ID: 26095983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of calcium sulfo-aluminate cement as an alternative to Portland Cement for the recycling of municipal solid waste incineration bottom ash in mortar.
    Antoun M; Becquart F; Gerges N; Aouad G
    Waste Manag Res; 2020 Aug; 38(8):868-875. PubMed ID: 32419672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete determination of the material composition of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2020 Feb; 102():677-685. PubMed ID: 31790926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.
    Niu M; Dong Q; Huang Y; Jin B; Wang H; Gu H
    Waste Manag Res; 2018 May; 36(5):415-425. PubMed ID: 29584586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.