BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33715731)

  • 1. Microwave-Assisted Expanded Graphite as a Long Cyclic Cathode for the Lithium Dual-Ion Battery.
    Salunkhe TT; Kim IT
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3989-3995. PubMed ID: 33715731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Slightly Expanded Graphite Anode with High Capacity Enabled By Stable Lithium-Ion/Metal Hybrid Storage.
    Li T; Cao Y; Song Q; Peng L; Qin X; Lv W; Kang F
    Small; 2024 May; ():e2403057. PubMed ID: 38805740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode.
    Lin K; Xu X; Qin X; Liu M; Zhao L; Yang Z; Liu Q; Ye Y; Chen G; Kang F; Li B
    Nanomicro Lett; 2022 Jul; 14(1):149. PubMed ID: 35869171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Potassium-Ion-Based Dual-Ion Battery.
    Ji B; Zhang F; Song X; Tang Y
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28295667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-Irradiation-Assisted Combustion toward Modified Graphite as Lithium Ion Battery Anode.
    Chen K; Yang H; Liang F; Xue D
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):909-914. PubMed ID: 29261274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.
    Agostini M; Brutti S; Hassoun J
    ACS Appl Mater Interfaces; 2016 May; 8(17):10850-7. PubMed ID: 27052542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentrated Electrolyte for High-Performance Ca-Ion Battery Based on Organic Anode and Graphite Cathode.
    Li J; Han C; Ou X; Tang Y
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202116668. PubMed ID: 34994498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries.
    Zhao T; She S; Ji X; Guo X; Jin W; Zhu R; Dang A; Li H; Li T; Wei B
    Sci Rep; 2016 Sep; 6():33833. PubMed ID: 27671848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiP
    Wen Y; Chen L; Pang Y; Guo Z; Bin D; Wang YG; Wang C; Xia Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8075-8082. PubMed ID: 28212003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fast Charge/Discharge and Wide-Temperature Battery with a Germanium Oxide Layer on a Ti
    Shang M; Chen X; Li B; Niu J
    ACS Nano; 2020 Mar; 14(3):3678-3686. PubMed ID: 32078306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Improved Cycling Stability of Anion De-/Intercalation in the Graphite Cathode for Dual-Ion Batteries.
    Li WH; Ning QL; Xi XT; Hou BH; Guo JZ; Yang Y; Chen B; Wu XL
    Adv Mater; 2019 Jan; 31(4):e1804766. PubMed ID: 30489656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Calcium-Ion Battery Based on Dual-Carbon Configuration with High Working Voltage and Long Cycling Life.
    Wu S; Zhang F; Tang Y
    Adv Sci (Weinh); 2018 Aug; 5(8):1701082. PubMed ID: 30128228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing a hybrid electrode toward high energy density with a staged Li
    Hao J; Yang F; Zhang S; He H; Xia G; Liu Y; Didier C; Liu T; Pang WK; Peterson VK; Lu J; Guo Z
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2815-2823. PubMed ID: 31996477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-Density Improvement in Li-Ion Rechargeable Batteries Based on LiCoO
    Bae KY; Cho SH; Kim BH; Son BD; Yoon WY
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WS
    Bellani S; Wang F; Longoni G; Najafi L; Oropesa-Nuñez R; Del Rio Castillo AE; Prato M; Zhuang X; Pellegrini V; Feng X; Bonaccorso F
    Nano Lett; 2018 Nov; 18(11):7155-7164. PubMed ID: 30285447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Energy Density Li metal Dual-Ion Battery with a Lithium Nitrate-Modified Carbonate-Based Electrolyte.
    Wu LN; Peng J; Sun YK; Han FM; Wen YF; Shi CG; Fan JJ; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2019 May; 11(20):18504-18510. PubMed ID: 31033271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium Dual-Ion Hybrid Batteries with Ultrahigh Rate Performance and Excellent Cycling Stability.
    Ding X; Zhang F; Ji B; Liu Y; Li J; Lee CS; Tang Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42294-42300. PubMed ID: 30451488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.