These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33716095)

  • 1. Lesioning of the pedunculopontine nucleus reduces rapid eye movement sleep, but does not alter cardiorespiratory activities during sleep, under hypoxic conditions in rats.
    Fink AM; Burke LA; Sharma K
    Respir Physiol Neurobiol; 2021 Jun; 288():103653. PubMed ID: 33716095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REM sleep diversity following the pedunculopontine tegmental nucleus lesion in rat.
    Petrovic J; Lazic K; Kalauzi A; Saponjic J
    Behav Brain Res; 2014 Sep; 271():258-68. PubMed ID: 24946074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase A in the pedunculopontine tegmental nucleus of rat contributes to regulation of rapid eye movement sleep.
    Datta S; Desarnaud F
    J Neurosci; 2010 Sep; 30(37):12263-73. PubMed ID: 20844122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of respiratory pattern and upper airway muscle activity by the pedunculopontine tegmentum: role of NMDA receptors.
    Saponjic J; Radulovacki M; Carley DW
    Sleep Breath; 2006 Dec; 10(4):195-202. PubMed ID: 17031714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat.
    Ulloor J; Mavanji V; Saha S; Siwek DF; Datta S
    J Neurophysiol; 2004 Apr; 91(4):1822-31. PubMed ID: 14702336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats.
    Fink AM; Dean C; Piano MR; Carley DW
    PLoS One; 2017; 12(11):e0187956. PubMed ID: 29121095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: a novel mechanism for the homeostatic regulation of rapid eye movement sleep.
    Barnes AK; Koul-Tiwari R; Garner JM; Geist PA; Datta S
    J Neurochem; 2017 Apr; 141(1):111-123. PubMed ID: 28027399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons.
    Huitron-Resendiz S; Kristensen MP; Sánchez-Alavez M; Clark SD; Grupke SL; Tyler C; Suzuki C; Nothacker HP; Civelli O; Criado JR; Henriksen SJ; Leonard CS; de Lecea L
    J Neurosci; 2005 Jun; 25(23):5465-74. PubMed ID: 15944374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amygdala and the pedunculopontine tegmental nucleus: interactions controlling active (rapid eye movement) sleep.
    Xi M; Fung SJ; Zhang J; Sampogna S; Chase MH
    Exp Neurol; 2012 Nov; 238(1):44-51. PubMed ID: 22971360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.
    Datta S; Siwek DF; Stack EC
    Neuroscience; 2009 Sep; 163(1):397-414. PubMed ID: 19540313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REM sleep disorder following general anesthesia in rats.
    Lazic K; Petrovic J; Ciric J; Kalauzi A; Saponjic J
    Physiol Behav; 2017 Jan; 168():41-54. PubMed ID: 27771371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of pedunculopontine tegmental PKA prevents GABAB receptor activation-mediated rapid eye movement sleep suppression in the freely moving rat.
    Datta S
    J Neurophysiol; 2007 Jun; 97(6):3841-50. PubMed ID: 17409165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel role of brain stem pedunculopontine tegmental adenylyl cyclase in the regulation of spontaneous REM sleep in the freely moving rat.
    Datta S; Prutzman SL
    J Neurophysiol; 2005 Sep; 94(3):1928-37. PubMed ID: 15888525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injection of glutamate into the pedunculopontine tegmental nuclei of anesthetized rat causes respiratory dysrhythmia and alters EEG and EMG power.
    Saponjic J; Radulovacki M; Carley DW
    Sleep Breath; 2005 Jun; 9(2):82-91. PubMed ID: 15968572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesopontine cholinergic projections to the hypoglossal motor nucleus.
    Rukhadze I; Kubin L
    Neurosci Lett; 2007 Feb; 413(2):121-5. PubMed ID: 17174027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of pedunculopontine tegmental protein kinase A: a mechanism for rapid eye movement sleep generation in the freely moving rat.
    Bandyopadhya RS; Datta S; Saha S
    J Neurosci; 2006 Aug; 26(35):8931-42. PubMed ID: 16943549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular and respiratory profiles during the sleep-wake cycle of rats previously submitted to chronic intermittent hypoxia.
    Bazilio DS; Bonagamba LGH; Moraes DJA; Machado BH
    Exp Physiol; 2019 Sep; 104(9):1408-1419. PubMed ID: 31099915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.