These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33716096)

  • 1. Trends in Healthcare Facility-Onset Clostridioides difficile Infection and the Impact of Testing Schemes in an Acute Care Hospital System in New York City, 2016-2019.
    Episcopia B; Gupta A; Fornek M; Kaminski M; Malik S; Sunny S; Landman D; Xavier G; Quale J
    Am J Infect Control; 2021 Oct; 49(10):1262-1266. PubMed ID: 33716096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductions in positive
    Goodenough D; Sefton S; Overton E; Smith E; Kraft CS; Varkey JB; Fridkin SK
    Infect Control Hosp Epidemiol; 2022 Jul; 43(7):935-938. PubMed ID: 34236019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential introduction of a multistep testing algorithm and nucleic acid amplification testing leading to an increase in
    Skinner AM; Yu B; Cheknis A; Pacheco SM; Gerding DN; Johnson S
    Infect Control Hosp Epidemiol; 2020 Oct; 41(10):1148-1153. PubMed ID: 32576334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost-Effectiveness Analysis of Four Common Diagnostic Methods for Clostridioides difficile Infection.
    Xuan S; Zangwill KM; Ni W; Ma J; Hay JW
    J Gen Intern Med; 2020 Apr; 35(4):1102-1110. PubMed ID: 32016703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of laboratory tests for detection for Clostridioides difficile: A multicenter prospective study in Japan.
    Senoh M; Kato H; Honda H; Fukuda T; Tagashira Y; Horiuchi H; Chiba H; Suzuki D; Hosokawa N; Kitazono H; Norisue Y; Kume H; Mori N; Morikawa H; Kashiwagura S; Higuchi A; Kato H; Nakamura M; Ishiguro S; Morita S; Ishikawa H; Watanabe T; Kojima K; Yokomaku I; Bando T; Toimoto K; Moriya K; Kasahara K; Kitada S; Ogawa J; Saito H; Tominaga H; Shimizu Y; Masumoto F; Tadera K; Yoshida J; Kikuchi T; Yoshikawa I; Watanabe T; Honda M; Yokote K; Toyokawa T; Miyazato H; Nakama M; Mahe C; Reske K; Olsen MA; Dubberke ER
    Anaerobe; 2019 Dec; 60():102107. PubMed ID: 31647977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of testing methods on incidence of
    McCauley BP; Evans ME; Simbartl LA; Gamage SD; Kralovic SM; Roselle GA
    Infect Control Hosp Epidemiol; 2021 Apr; 42(4):461-463. PubMed ID: 33185177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cost of illness comparison for toxigenic Clostridioides difficile diagnosis algorithms in developing countries.
    Cançado GGL; Abreu ES; Nardelli MJ; Serwa P; Brachmann M
    Anaerobe; 2021 Aug; 70():102390. PubMed ID: 34058377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the introduction of nucleic acid amplification testing on Clostridioides difficile detection and ribotype distribution in Wales.
    Perry MD; White PL; Morris TE
    Anaerobe; 2021 Feb; 67():102313. PubMed ID: 33309680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction in testing and change in testing algorithm associated with decrease in number of nosocomial Clostridioides (Clostridium) difficile infections.
    Cook PP; Nichols S; Coogan M; Opera J; DeHart M
    Am J Infect Control; 2020 Sep; 48(9):1019-1022. PubMed ID: 32044135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using diagnostic stewardship to reduce rates, healthcare expenditures and accurately identify cases of hospital-onset
    Solanky D; Juang DK; Johns ST; Drobish IC; Mehta SR; Kumaraswamy M
    Infect Control Hosp Epidemiol; 2021 Jan; 42(1):51-56. PubMed ID: 32943129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 2-step algorithm combining glutamate dehydrogenase and nucleic acid amplification tests for the detection of Clostridioides difficile in stool specimens.
    Liu C; Tang C; Han Y; Xu Y; Ni F; Jin K; Liu G
    Eur J Clin Microbiol Infect Dis; 2021 Feb; 40(2):345-351. PubMed ID: 32944896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the National Healthcare Safety Network standardized infection ratio risk adjustment for healthcare-facility-onset
    Polage CR; Quan KA; Madey K; Myers FE; Wightman DA; Krishna S; Grein JD; Gibbs L; Yokoe D; Mabalot SC; Chinn R; Hallmark A; Rubin Z; Fontenot M; Cohen S; Birnbaum D; Huang SS; Torriani FJ
    Infect Control Hosp Epidemiol; 2020 Apr; 41(4):404-410. PubMed ID: 32052726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in Clostridioides difficile infection across a public health hospital system in New York City 2019-2021: A cautionary note.
    Maro A; Asrat H; Qiu W; Liang R; Sunny S; Aslam S; Abdallah M; Fornek M; Episcopia B; Quale J
    Am J Infect Control; 2022 Dec; 50(12):1389-1391. PubMed ID: 35569616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementing a Clostridium difficile testing algorithm and its effect on isolation duration and treatment initiation: a pre- and post-implementation study.
    Vogelzang EH; Lankelma JM; van Mansfeld R; van Prehn J; van Houdt R
    Eur J Clin Microbiol Infect Dis; 2020 Jun; 39(6):1071-1076. PubMed ID: 31970532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preventable Patient Harm: a Multidisciplinary, Bundled Approach to Reducing Clostridium difficile Infections While Using a Glutamate Dehydrogenase/Toxin Immunochromatographic Assay/Nucleic Acid Amplification Test Diagnostic Algorithm.
    Schultz K; Sickbert-Bennett E; Marx A; Weber DJ; DiBiase LM; Campbell-Bright S; Bode LE; Baker M; Belhorn T; Buchanan M; Goldbach S; Harden J; Hoke E; Huenniger B; Juliano JJ; Langston M; Ritchie H; Rutala WA; Smith J; Summerlin-Long S; Teal L; Gilligan P
    J Clin Microbiol; 2018 Sep; 56(9):. PubMed ID: 29997201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxin Enzyme Immunoassays Detect Clostridioides difficile Infection With Greater Severity and Higher Recurrence Rates.
    Guh AY; Hatfield KM; Winston LG; Martin B; Johnston H; Brousseau G; Farley MM; Wilson L; Perlmutter R; Phipps EC; Dumyati GK; Nelson D; Hatwar T; Kainer MA; Paulick AL; Karlsson M; Gerding DN; McDonald LC
    Clin Infect Dis; 2019 Oct; 69(10):1667-1674. PubMed ID: 30615074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of mandatory nucleic acid amplification test (NAAT) testing approval on hospital-onset
    McCormick WL; Jackson G; Andrea SB; Whitehead V; Chargualaf TL; Touzard-Romo F
    Infect Control Hosp Epidemiol; 2024 Jan; 45(1):106-109. PubMed ID: 37424227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usefulness of a newly developed high-speed polymerase chain reaction analysis system for the diagnosis of Clostridioides difficile infection.
    Furukawa K; Mitsutake H; Aso R; Sekizawa R; Okanda T; Hayashi K; Matsumoto T; Nakamura S
    J Infect Chemother; 2021 May; 27(5):715-721. PubMed ID: 33402305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Agreement Between an Ultrasensitive Clostridioides difficile Toxin Assay and a C. difficile Laboratory Algorithm Utilizing GDH-and-Toxin Enzyme Immunoassays and Cytotoxin Testing.
    Landry ML; Topal JE; Estis J; Katzenbach P; Nolan N; Sandlund J
    J Clin Microbiol; 2020 Jan; 58(2):. PubMed ID: 31776192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends in Clostridioides difficile diagnosis before and after a change in testing algorithm.
    Turner DP; Thorburn SJ; Crowe A; Jardine D; Timmins C
    J Microbiol Methods; 2021 May; 184():106189. PubMed ID: 33689797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.